15 research outputs found

    A framework for understanding and targeting residual disease in oncogene-driven solid cancers

    No full text
    Molecular targeted therapy has the potential to dramatically improve cancer patient survival. However, complete and durable responses to targeted therapy are rare in advanced-stage solid cancer patients. Even the most effective targeted therapies generally do not induce a complete tumor response, resulting in residual disease and tumor progression that limits patient survival. We discuss the emerging need to more fully understand the molecular basis of residual disease as a prelude to designing principled therapeutic strategies to minimize or eliminate it so that we can move from temporary to chronic control or cure in advanced-stage solid cancer patients. Ultimately, we propose a shift from the current reactive paradigm of analyzing and treating acquired drug resistance to a pre-emptive paradigm of defining the mechanisms of residual disease in order to target and limit this disease reservoir

    Determining the optimal dose in the development of anticancer agents

    No full text
    Identification of the optimal dose remains a key challenge in drug development. For cytotoxic drugs, the standard approach is based on identifying the maximum tolerated dose (MTD) in phase I trials and incorporating this to subsequent trials. However, this strategy does not take into account important aspects of clinical pharmacology. For targeted agents, the dose-effect relationships from preclinical studies are less obvious, and it is important to change the way these agents are developed to avoid recommending drug doses for different populations without evidence of differential antitumour effects in different diseases. The use of expanded cohorts in phase I trials to better define MTD and refine dose optimization should be further explored together with a focus on efficacy rather than toxicity-based predictions. Another key consideration in dose optimization is related to interindividual pharmacokinetic variability. High variability in intra-individual pharmacokinetics has been observed for many orally-administered drugs, especially those with low bioavailability, which might complicate identification of dose-effect relationships. End-organ dysfunction, interactions with other prescription drugs, herbal supplements, adherence, and food intake can influence pharmacokinetics. It is important these variables are identified during early clinical trials and considered in the development of further phase II and subsequent large-scale phase III studies
    corecore