16 research outputs found

    DMF inhibits PDGF-BB induced airway smooth muscle cell proliferation through induction of heme-oxygenase-1

    Get PDF
    Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC) proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF) inhibits platelet-derived growth factor (PDGF)-BB induced mitogen and stress activated kinase (MSK)-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types

    Effect of the rs2259816 polymorphism in the HNF1A gene on circulating levels of c-reactive protein and coronary artery disease (the ludwigshafen risk and cardiovascular health study)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>C-reactive protein is a well established marker of inflammation and has been used to predict future cardiovascular disease. It is still controversial if it plays an active role in the development of cardiovascular disease. Recently, polymorphisms in the gene for HNF1α have been linked to the levels of C-reactive protein and coronary artery disease.</p> <p>Methods</p> <p>We investigated the association of the rs2259816 polymorphism in the HNF1A gene with the circulating level of C-reactive protein and the hazard of coronary artery disease in the LURIC Study cohort.</p> <p>Results</p> <p>Compared to CC homozygotes, the level of C-reactive protein was decreased in carriers of at least one A-allele. Each A-allele decreased CRP by approximately 15%. The odds ratio for coronary artery disease was only very slightly increased in carriers of the A-allele and this association did not reach statistical significance.</p> <p>Conclusions</p> <p>In the LURIC Study cohort the A-allele of rs2259816 is associated with decreased CRP but not with coronary artery disease.</p

    Transient Alteration of Cellular Redox Buffering before Irradiation Triggers Apoptosis in Head and Neck Carcinoma Stem and Non-Stem Cells

    Get PDF
    Background: Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting strategy during the course of irradiation of HNSCC in order to overcome their radioresistance associated with redox adaptation. Methodology/Principal Findings: Treatment of SQ20B cells with dimethylfumarate (DMF), a GSH-depleting agent, and L-Buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis 4 h before a 10 Gy irradiation led to the lowering of the endogenous GSH content to less than 10 % of that in control cells and to the triggering of radiation-induced apoptotic cell death. The sequence of biochemical events after GSH depletion and irradiation included ASK-1 followed by JNK activation which resulted in the triggering of the intrinsic apoptotic pathway through Bax translocation to mitochondria. Conclusions: This transient GSH depletion also triggered radiation-induced cell death in SQ20B stem cells, a key event to overcome locoregional recurrence of HNSCC. Finally, our in vivo data highlight the relevance for further clinical trials o

    Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian olfactory receptors (ORs) are subject to a remarkable but poorly understood regime of transcriptional regulation, whereby individual olfactory neurons each express only one allele of a single member of the large OR gene family.</p> <p>Results</p> <p>We performed a rigorous search for enriched sequence motifs in the largest dataset of OR promoter regions analyzed to date. We combined measures of cross-species conservation with databases of known transcription factor binding sites and <it>ab initio </it>motif-finding algorithms. We found strong enrichment of binding sites for the O/E family of transcription factors and for homeodomain factors, both already known to be involved in the transcriptional control of ORs, but did not identify any novel enriched sequences. We also found that TATA-boxes are present in at least a subset of OR promoters.</p> <p>Conclusions</p> <p>Our rigorous approach provides a template for the analysis of the regulation of large gene families and demonstrates some of the difficulties and pitfalls of such analyses. Although currently available bioinformatics methods cannot detect all transcriptional regulatory elements, our thorough analysis of OR promoters shows that in the case of this gene family, experimental approaches have probably already identified all the binding factors common to large fractions of OR promoters.</p
    corecore