55 research outputs found

    Galectin-3 in Cardiac Remodeling and Heart Failure

    Get PDF
    Galectin-3 is a member of the galectin family, which consists of animal lectins that bind β-galactosides. Recently, a role for galectin-3 in the pathophysiology of heart failure has been suggested. It was observed that galectin-3 is specifically upregulated in decompensated heart failure compared with compensated heart failure in animal models of heart failure. This has been associated with activation of fibroblasts and macrophages, which are a hallmark of cardiac remodeling. Therefore, galectin-3 may be a culprit biomarker in heart failure. Initial clinical observations indicate that galectin-3 may be a useful biomarker for decompensated heart failure, with incremental value over well-used “pressure-dependent” biomarkers, such as B-type natriuretic peptide. Future studies should focus on galectin-3 biology to better address the usefulness of galectin-3 as a biomarker and probe the usefulness of anti-galectin-3 therapy in treating heart failure

    Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria

    Get PDF
    Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca2+ and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 (dPC12), dSH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in dPC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca2+ and ΔΨm. The response to Baf is regulated by cytosolic Ca2+ fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf

    Venous gas embolism as a predictive tool for improving CNS decompression safety

    Get PDF
    A key process in the pathophysiological steps leading to decompression sickness (DCS) is the formation of inert gas bubbles. The adverse effects of decompression are still not fully understood, but it seems reasonable to suggest that the formation of venous gas emboli (VGE) and their effects on the endothelium may be the central mechanism leading to central nervous system (CNS) damage. Hence, VGE might also have impact on the long-term health effects of diving. In the present review, we highlight the findings from our laboratory related to the hypothesis that VGE formation is the main mechanism behind serious decompression injuries. In recent studies, we have determined the impact of VGE on endothelial function in both laboratory animals and in humans. We observed that the damage to the endothelium due to VGE was dose dependent, and that the amount of VGE can be affected both by aerobic exercise and exogenous nitric oxide (NO) intervention prior to a dive. We observed that NO reduced VGE during decompression, and pharmacological blocking of NO production increased VGE formation following a dive. The importance of micro-nuclei for the formation of VGE and how it can be possible to manipulate the formation of VGE are discussed together with the effects of VGE on the organism. In the last part of the review we introduce our thoughts for the future, and how the enigma of DCS should be approached

    Cutaneous wound healing: recruiting developmental pathways for regeneration

    Full text link
    corecore