383 research outputs found

    Review on the validity of self-report to assess work-related diseases

    Get PDF
    Self-report is an efficient and accepted means of assessing population characteristics, risk factors, and diseases. Little is known on the validity of self-reported work-related illness as an indicator of the presence of a work-related disease. This study reviews the evidence on (1) the validity of workers' self-reported illness and (2) on the validity of workers' self-assessed work relatedness of an illness. A systematic literature search was conducted in four databases (Medline, Embase, PsycINFO and OSH-Update). Two reviewers independently performed the article selection and data extraction. The methodological quality of the studies was evaluated, levels of agreement and predictive values were rated against predefined criteria, and sources of heterogeneity were explored. In 32 studies, workers' self-reports of health conditions were compared with the "reference standard" of expert opinion. We found that agreement was mainly low to moderate. Self-assessed work relatedness of a health condition was examined in only four studies, showing low-to-moderate agreement with expert assessment. The health condition, type of questionnaire, and the case definitions for both self-report and reference standards influence the results of validation studies. Workers' self-reported illness may provide valuable information on the presence of disease, although the generalizability of the findings is limited primarily to musculoskeletal and skin disorders. For case finding in a population at risk, e.g., an active workers' health surveillance program, a sensitive symptom questionnaire with a follow-up by a medical examination may be the best choice. Evidence on the validity of self-assessed work relatedness of a health condition is scarce. Adding well-developed questions to a specific medical diagnosis exploring the relationship between symptoms and work may be a good strateg

    Health promotion through self-care and community participation: Elements of a proposed programme in the developing countries

    Get PDF
    BACKGROUND: The concepts of health promotion, self-care and community participation emerged during 1970s, primarily out of concerns about the limitation of professional health system. Since then there have been rapid growth in these areas in the developed world, and there is evidence of effectiveness of such interventions. These areas are still in infancy in the developing countries. There is a window of opportunity for promoting self care and community participation for health promotion. DISCUSSION: A broad outline is proposed for designing a health promotion programme in developing countries, following key strategies of the Ottawa Charter for health promotion and principles of self care and community participation. Supportive policies may be framed. Self care clearinghouses may be set up at provincial level to co-ordinate the programme activities in consultation with district and national teams. Self care may be promoted in the schools and workplaces. For developing personal skills of individuals, self care information, generated through a participatory process, may be disseminated using a wide range of print and audio-visual tools and information technology based tools. One such potential tool may be a personally held self care manual and health record, to be designed jointly by the community and professionals. Its first part may contain basic self care information and the second part may contain outlines of different personally-held health records to be used to record important health and disease related events of an individual. Periodic monitoring and evaluation of the programme may be done. Studies from different parts of the world indicate the effectiveness and cost-effectiveness of self care interventions. The proposed outline has potential for health promotion and cost reduction of health services in the developing countries, and may be adapted in different situations. SUMMARY: Self care, community participation and health promotion are emerging but dominant areas in the developed countries. Elements of a programme for health promotion in the developing countries following key principles of self care and community participation are proposed. Demonstration programmes may be initiated to assess the feasibility and effectiveness of this programme before large scale implementation

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

    Get PDF
    Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by ∼50% for jet pT ∼ 20 GeV and by ∼80% for jet pT 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for 20 < pT < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, τ -leptons), reducing the overall event size on disk by about 6% in early Run 3 pileup conditions. Offline reconstruction for Run 3 includes the timing requirement

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √ s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Corrigendum to "Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at √s=13 TeV" (Physics Letters B, 842 (2023), 137379)

    Get PDF

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √ s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore