19 research outputs found

    Endophytic Fungi as Novel Resources of natural Therapeutics

    Full text link

    The GAS6-AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer

    No full text
    Ovarian cancer is a complex disease with heterogeneity among the gene expression molecular subtypes (GEMS) between patients. Patients with tumors of a mesenchymal (“Mes”) subtype have a poorer prognosis than patients with tumors of an epithelial (“Epi”) subtype. We evaluated GEMS of ovarian cancer patients for molecular signaling profiles and assessed how the differences in these profiles could be leveraged to improve patient clinical outcome. Kinome enrichment analysis identified AXL as a particularly abundant kinase in Mes-subtype tumor tissue and cell lines. In Mes cells, upon activation by its ligand GAS6, AXL coclustered with and transactivated the receptor tyrosine kinases (RTKs) cMET, EGFR, and HER2, producing sustained extracellular signal–regulated kinase (ERK) activation. In Epi-A cells, AXL was less abundant and induced a transient activation of ERK without evidence of RTK transactivation. AXL-RTK crosstalk also stimulated sustained activation of the transcription factor FRA1, which correlated with the induction of the epithelial-mesenchymal transition (EMT)–associated transcription factor SLUG and stimulation of motility exclusively in Mes-subtype cells. The AXL inhibitor R428 attenuated RTK and ERK activation and reduced cell motility in Mes cells in culture and reduced tumor growth in a chick chorioallantoic membrane model. A higher concentration of R428 was needed to inhibit ERK activation and cell motility in Epi-A cells. Silencing AXL in Mes-subtype cells reversed the mesenchymal phenotype in culture and abolished tumor formation in an orthotopic xenograft mouse model. Thus, AXL-targeted therapy may improve clinical outcome for patients with Mes-subtype ovarian cancer

    The tumour suppressor OPCML promotes AXL inactivation by the phosphatase PTPRG in ovarian cancer

    No full text
    In ovarian cancer, the prometastatic RTK AXL promotes motility, invasion and poor prognosis. Here, we show that reduced survival caused by AXL overexpression can be mitigated by the expression of the GPI-anchored tumour suppressor OPCML Further, we demonstrate that AXL directly interacts with OPCML, preferentially so when AXL is activated by its ligand Gas6. As a consequence, AXL accumulates in cholesterol-rich lipid domains, where OPCML resides. Here, phospho-AXL is brought in proximity to the lipid domain-restricted phosphatase PTPRG, which de-phosphorylates the RTK/ligand complex. This prevents AXL-mediated transactivation of other RTKs (cMET and EGFR), thereby inhibiting sustained phospho-ERK signalling, induction of the EMT transcription factor Slug, cell migration and invasion. From a translational perspective, we show that OPCML enhances the effect of the phase II AXL inhibitor R428 in vitro and in vivo We therefore identify a novel mechanism by which two spatially restricted tumour suppressors, OPCML and PTPRG, coordinate to repress AXL-dependent oncogenic signalling

    The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells

    No full text
    Lenalidomide (Revlimid®; CC-5013) and pomalidomide (CC-4047) are IMiDs® proprietary drugs having immunomodulatory properties that have both shown activity in cancer clinical trials; lenalidomide is approved in the United States for a subset of MDS patients and for treatment of patients with multiple myeloma when used in combination with dexamethasone. These drugs exhibit a range of interesting clinical properties, including anti-angiogenic, anti-proliferative, and pro-erythropoietic activities although exact cellular target(s) remain unclear. Also, anti-inflammatory effects on LPS-stimulated monocytes (TNF-α is decreased) and costimulatory effects on anti-CD3 stimulated T cells, (enhanced T cell proliferation and proinflammatory cytokine production) are observed These drugs also cause augmentation of NK-cell cytotoxic activity against tumour-cell targets. Having shown that pomalidomide confers T cell-dependant adjuvant-like protection in a preclinical whole tumour-cell vaccine-model, we now show that lenalidomide and pomalidomide strongly inhibit T-regulatory cell proliferation and suppressor-function. Both drugs inhibit IL-2-mediated generation of FOXP3 positive CTLA-4 positive CD25high CD4+ T regulatory cells from PBMCs by upto 50%. Furthermore, suppressor function of pre-treated T regulatory cells against autologous responder-cells is abolished or markedly inhibited without drug related cytotoxicity. Also, Balb/C mice exhibit 25% reduction of lymph-node T regulatory cells after pomalidomide treatment. Inhibition of T regulatory cell function was not due to changes in TGF-β or IL-10 production but was associated with decreased T regulatory cell FOXP3 expression. In conclusion, our data provide one explanation for adjuvant properties of lenalidomide and pomalidomide and suggest that they may help overcome an important barrier to tumour-specific immunity in cancer patients

    Defect in recruiting effector memory CD8+ T-cells in malignant pleural effusions compared to normal pleural fluid

    Get PDF
    International audienceBackgroundMalignant pleural effusions (MPE) are a common and fatal complication in cancers including lung or breast cancers, or malignant pleural mesothelioma (MPM). MPE animal models and immunotherapy trials in MPM patients previously suggested defects of the cellular immunity in MPE. However only few observational studies of the immune response were done in MPM patients, using questionable control groups (transudate...).MethodsWe compared T cell populations evaluated by flow cytometry from blood and pleural effusion of untreated patients with MPM (n = 58), pleural metastasis of adenocarcinoma (n = 30) or with benign pleural lesions associated with asbestos exposure (n = 23). Blood and pleural fluid were also obtained from healthy subjects, providing normal values for T cell populations.ResultsBlood CD4+ or CD8+ T cells percentages were similar in all groups of patients or healthy subjects. Whereas pleural fluid from healthy controls contained mainly CD8+ T cells, benign or malignant pleural effusions included mainly CD4+ T cells. Effector memory T cells were the main T cell subpopulation in pleural fluid from healthy subjects. In contrast, there was a striking and selective recruitment of central memory CD4+ T cells in MPE, but not of effector cells CD8+ T cells or NK cells in the pleural fluid as one would expect in order to obtain an efficient immune response.ConclusionsComparing for the first time MPE to pleural fluid from healthy subjects, we found a local defect in recruiting effector CD8+ T cells, which may be involved in the escape of tumor cells from immune response. Further studies are needed to characterize which subtypes of effector CD8+ T cells are involved, opening prospects for cell therapy in MPE and MPM
    corecore