3 research outputs found

    Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening

    Get PDF
    Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities.Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM+HC+HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained.Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Structural and functional changes of the pulmonary vasculature after hypoxia exposure in the neonatal period: a new swine model of pulmonary vascular disease.

    No full text
    Pulmonary vascular disease (PVD) represents an underestimated and increasing clinical burden not only in the neonatal period but also later in life, when exercise tolerance is decreased. Animal models performing long-term followup after a perinatal insult are lacking. This study aimed to develop and characterize a neonatal swine model with hypoxia-induced PVD during long-term followup after reexposure to normoxia and to investigate the exercise response in this model. Piglets were exposed to a normoxic ( n = 10) or hypoxic environment ( n = 9) for 4 wk. Neonatal hypoxia exposure resulted in pulmonary hypertension. Mean pulmonary artery pressure was elevated 1 day after reexposure to normoxia (30.2 ± 3.3 vs. 14.3 ± 0.9 mmHg) and remained significantly higher in the second week (32.8 ± 3.8 vs. 21.4 ± 1.2 mmHg), accompanied by decreased exercise tolerance. Exercise resulted in a trend toward an exaggerated increase of pulmonary artery pressure in hypoxia-exposed animals ( week 6, P = 0.086). Although pulmonary hypertension was transient, thickening of pulmonary arterioles was found at the end of followup. Furthermore, right ventricular dilation, lower right ventricular fractional area change ( week 8, 40.0 ± 2.7% vs. 29.5 ± 4.7%), and tricuspid annular plane systolic excursion ( week 8, 27.0 ± 2.5 vs. 22.9 ± 2.1 mm) persisted during followup. Male animals showed more severe PVD than female animals. In conclusion, we developed a neonatal swine model that allows examination of the long-term sequelae of damage to the developing neonatal lung, the course of the disease and the effect of therapy on long-term outcome. NEW & NOTEWORTHY The swine model of neonatal pulmonary vascular disease developed in the present study is the first that allows exercise testing and examination of long-term sequelae of a perinatal hypoxic insult, the course of the disease, and the effect of therapy on long-term outcome
    corecore