11 research outputs found
A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass
Background:
The main role of pretreatment is to reduce the natural biomass recalcitrance and thus enhance sac-
charification yield. A further prerequisite for efficient utilization of all biomass components is their efficient fractiona-
tion into well-defined process streams. Currently available pretreatment methods only partially fulfill these criteria.
Steam explosion, for example, excels as a pretreatment method but has limited potential for fractionation, whereas
organosolv is excellent for delignification but offers poor biomass deconstruction.
Results:
In this article, a hybrid method combining the cooking and fractionation of conventional organosolv pre
-
treatment with the implementation of an explosive discharge of the cooking mixture at the end of pretreatment was
developed. The effects of various pretreatment parameters (ethanol content, duration, and addition of sulfuric acid)
were evaluated. Pretreatment of birch at 200
°C with 60%
v/v ethanol and 1%
w/w
biomass
H
2
SO
4
was proven to be the
most efficient pretreatment condition yielding pretreated solids with 77.9%
w/w cellulose, 8.9%
w/w hemicellulose,
and 7.0
w/w lignin content. Under these conditions, high delignification of 86.2% was demonstrated. The recovered
lignin was of high purity, with cellulose and hemicellulose contents not exceeding 0.31 and 3.25%
w/w, respectively,
and ash to be <
0.17%
w/w in all cases, making it suitable for various applications. The pretreated solids presented
high saccharification yields, reaching 68% at low enzyme load (6
FPU/g) and complete saccharification at high
enzyme load (22.5
FPU/g). Finally, simultaneous saccharification and fermentation (SSF) at 20%
w/w solids yielded an
ethanol titer of 80
g/L after 192
h, corresponding to 90% of the theoretical maximum.
Conclusions:
The novel hybrid method developed in this study allowed for the efficient fractionation of birch
biomass and production of pretreated solids with high cellulose and low lignin contents. Moreover, the explosive dis-
charge at the end of pretreatment had a positive effect on enzymatic saccharification, resulting in high hydrolyzability
of the
pretreated solids and elevated ethanol titers in the
following high-gravity SSF. To the best of our knowledge,
the ethanol concentration obtained with this method is the highest so far for birch biomass
Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii
In the present study, we investigated the peroxidase-catalyzed detoxification of model phenolic compounds and evaluated the inhibitory effects of the detoxified solution on butanol production by Clostridium beijerinckii National Collection of Industrial and Marine Bacteria Ltd. 8052. The six phenolic compounds, p-coumaric acid, ferulic acid, 4-hydroxybenzoic acid, vanillic acid, syringaldehyde, and vanillin, were selected as model fermentation inhibitors generated during pretreatment and hydrolysis of lignocellulose. The enzyme reaction was optimized as a function of the reaction conditions of pH, peroxidase concentration, and hydrogen peroxide to substrate ratio. Most of the tested phenolics have a broad optimum pH range of 6.0 to 9. Removal efficiency increased with the molar ratio of H(2)O(2) to each compound up to 0.5-1.25. In the case of p-coumaric acid, ferulic acid, vanillic acid, and vanillin, the removal efficiency was almost 100% with only 0.01 mu M of enzyme. The tested phenolic compounds (1 g/L) inhibited cell growth by 64-74%, while completely inhibiting the production of butanol. Although syringaldehyde and vanillin were less toxic on cell growth, the level of inhibition on the butanol production was quite different. The detoxified solution remarkably improved cell growth and surprisingly increased butanol production to the level of the control. Hence, our present study, using peroxidase for the removal of model phenolic compounds, could be applied towards the detoxification of lignocellulosic hydrolysates for butanol fermentationclos
Deconstruction of the hemicellulose fraction from lignocellulosic materials into simple sugars
Hemicelluloses hold a great promise for the production of added-value compounds in the biorefinery framework. Specifically, the xylan-rich hemicelluloses from hardwoods and agro-industrial residues present themselves as effective feedstock choices for the biotechnological production of xylitol. This paper reviews the various hemicellulose structures present in such materials and critically evaluates the available processing options to produce xylose-rich fermentable hydrolysates. Currently, acid-based processes still present the best trade-off between operation easiness and xylose yield and recovery. Nevertheless, concerns regarding the impact of the fractionation processes on the overall upgradability of all biomass fractions (namely, cellulose and specially lignin) may turn the route to other strategies. Specifically, the combined/sequential use of processes targeting hemicellulose dissolution and hydrolysis might hold great promise for the economical production of pentoses