18 research outputs found

    New Dual Mode Gadolinium Nanoparticle Contrast Agent for Magnetic Resonance Imaging

    Get PDF
    BACKGROUND: Liposomal-based gadolinium (Gd) nanoparticles have elicited significant interest for use as blood pool and molecular magnetic resonance imaging (MRI) contrast agents. Previous generations of liposomal MR agents contained gadolinium-chelates either within the interior of liposomes (core-encapsulated gadolinium liposomes) or presented on the surface of liposomes (surface-conjugated gadolinium liposomes). We hypothesized that a liposomal agent that contained both core-encapsulated gadolinium and surface-conjugated gadolinium, defined herein as dual-mode gadolinium (Dual-Gd) liposomes, would result in a significant improvement in nanoparticle-based T1 relaxivity over the previous generations of liposomal agents. In this study, we have developed and tested, both in vitro and in vivo, such a dual-mode liposomal-based gadolinium contrast agent. METHODOLOGY/PRINCIPAL FINDINGS: THREE TYPES OF LIPOSOMAL AGENTS WERE FABRICATED: core-encapsulated, surface-conjugated and dual-mode gadolinium liposomes. In vitro physico-chemical characterizations of the agents were performed to determine particle size and elemental composition. Gadolinium-based and nanoparticle-based T1 relaxivities of various agents were determined in bovine plasma. Subsequently, the agents were tested in vivo for contrast-enhanced magnetic resonance angiography (CE-MRA) studies. Characterization of the agents demonstrated the highest gadolinium atoms per nanoparticle for Dual-Gd liposomes. In vitro, surface-conjugated gadolinium liposomes demonstrated the highest T1 relaxivity on a gadolinium-basis. However, Dual-Gd liposomes demonstrated the highest T1 relaxivity on a nanoparticle-basis. In vivo, Dual-Gd liposomes resulted in the highest signal-to-noise ratio (SNR) and contrast-to-noise ratio in CE-MRA studies. CONCLUSIONS/SIGNIFICANCE: The dual-mode gadolinium liposomal contrast agent demonstrated higher particle-based T1 relaxivity, both in vitro and in vivo, compared to either the core-encapsulated or the surface-conjugated liposomal agent. The dual-mode gadolinium liposomes could enable reduced particle dose for use in CE-MRA and increased contrast sensitivity for use in molecular imaging

    Ethnobotany in the Nepal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indigenous knowledge has become recognized worldwide not only because of its intrinsic value but also because it has a potential instrumental value to science and conservation. In Nepal, the indigenous knowledge of useful and medicinal plants has roots in the remote past.</p> <p>Methods</p> <p>The present study reviews the indigenous knowledge and use of plant resources of the Nepal Himalayas along the altitudinal and longitudinal gradient. A total of 264 studies focusing on ethnobotany, ethnomedicine and diversity of medicinal and aromatic plants, carried out between 1979 and 2006 were consulted for the present analysis. In order to cross check and verify the data, seven districts of west Nepal were visited in four field campaigns.</p> <p>Results</p> <p>In contrast to an average of 21–28% ethnobotanically/ethnomedicinally important plants reported for Nepal, the present study found that up to about 55% of the flora of the study region had medicinal value. This indicates a vast amount of undocumented knowledge about important plant species that needs to be explored and documented. The richness of medicinal plants decreased with increasing altitude but the percentage of plants used as medicine steadily increased with increasing altitude. This was due to preferences given to herbal remedies in high altitude areas and a combination of having no alternative choices, poverty and trust in the effectiveness of folklore herbal remedies.</p> <p>Conclusion</p> <p>Indigenous knowledge systems are culturally valued and scientifically important. Strengthening the wise use and conservation of indigenous knowledge of useful plants may benefit and improve the living standard of poor people.</p

    Mental object rotation based on two-dimensional visual representations.

    No full text
    The discovery of mental rotation was one of the most significant landmarks in experimental psychology, leading to the ongoing assumption that to visually compare objects from different three-dimensional viewpoints, we use explicit internal simulations of object rotations, to 'mentally adjust' one object until it matches the other1. These rotations are thought to be performed on three-dimensional representations of the object, by literal analogy to physical rotations. In particular, it is thought that an imagined object is continuously adjusted at a constant three-dimensional angular rotation rate from its initial orientation to the final orientation through all intervening viewpoints2. While qualitative theories have tried to account for this phenomenon3, to date there has been no explicit, image-computable model of the underlying processes. As a result, there is no quantitative account of why some object viewpoints appear more similar to one another than others when the three-dimensional angular difference between them is the same4,5. We reasoned that the specific pattern of non-uniformities in the perception of viewpoints can reveal the visual computations underlying mental rotation. We therefore compared human viewpoint perception with a model based on the kind of two-dimensional 'optical flow' computations that are thought to underlie motion perception in biological vision6, finding that the model reproduces the specific errors that participants make. This suggests that mental rotation involves simulating the two-dimensional retinal image change that would occur when rotating objects. When we compare objects, we do not do so in a distal three-dimensional representation as previously assumed, but by measuring how much the proximal stimulus would change if we watched the object rotate, capturing perspectival appearance changes7

    Insights from animal models on the immunogenetics of leprosy: a review

    No full text
    A variety of host immunogenetic factors appear to influence both an individual's susceptibility to infection with Mycobacterium leprae and the pathologic course of the disease. Animal models can contribute to a better understanding of the role of immunogenetics in leprosy through comparative studies helping to confirm the significance of various identified traits and in deciphering the underlying mechanisms that may be involved in expression of different disease related phenotypes. Genetically engineered mice, with specific immune or biochemical pathway defects, are particularly useful for investigating granuloma formation and resistance to infection and are shedding new light on borderline areas of the leprosy spectrum which are clinically unstable and have a tendency toward immunological complications. Though armadillos are less developed in this regard, these animals are the only other natural hosts of M. leprae and they present a unique opportunity for comparative study of genetic markers and mechanisms associable with disease susceptibility or resistance, especially the neurological aspects of leprosy. In this paper, we review the recent contributions of genetically engineered mice and armadillos toward our understanding of the immunogenetics of leprosy
    corecore