82 research outputs found
Laws of biology: why so few?
Finding fundamental organizing principles is the current intellectual front end of systems biology. From a hydrogen atom to the whole cell level, organisms manage massively parallel and massively interactive processes over several orders of magnitude of size. To manage this scale of informational complexity it is natural to expect organizing principles that determine higher order behavior. Currently, there are only hints of such organizing principles but no absolute evidences. Here, we present an approach as old as Mendel that could help uncover fundamental organizing principles in biology. Our approach essentially consists of identifying constants at various levels and weaving them into a hierarchical chassis. As we identify and organize constants, from pair-wise interactions to networks, our understanding of the fundamental principles in biology will improve, leading to a theory in biology
Telomeric Trans-Silencing in Drosophila melanogaster: Tissue Specificity, Development and Functional Interactions between Non-Homologous Telomeres
BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations
Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes
Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype
Impedance Responses Reveal β2-Adrenergic Receptor Signaling Pluridimensionality and Allow Classification of Ligands with Distinct Signaling Profiles
The discovery that drugs targeting a single G protein-coupled receptor (GPCR) can differentially modulate distinct subsets of the receptor signaling repertoire has created a challenge for drug discovery at these important therapeutic targets. Here, we demonstrate that a single label-free assay based on cellular impedance provides a real-time integration of multiple signaling events engaged upon GPCR activation. Stimulation of the β2-adrenergic receptor (β2AR) in living cells with the prototypical agonist isoproterenol generated a complex, multi-featured impedance response over time. Selective pharmacological inhibition of specific arms of the β2AR signaling network revealed the differential contribution of Gs-, Gi- and Gβγ-dependent signaling events, including activation of the canonical cAMP and ERK1/2 pathways, to specific components of the impedance response. Further dissection revealed the essential role of intracellular Ca2+ in the impedance response and led to the discovery of a novel β2AR-promoted Ca2+ mobilization event. Recognizing that impedance responses provide an integrative assessment of ligand activity, we screened a collection of β-adrenergic ligands to determine if differences in the signaling repertoire engaged by compounds would lead to distinct impedance signatures. An unsupervised clustering analysis of the impedance responses revealed the existence of 5 distinct compound classes, revealing a richer signaling texture than previously recognized for this receptor. Taken together, these data indicate that the pluridimensionality of GPCR signaling can be captured using integrative approaches to provide a comprehensive readout of drug activity
Mobile phones and head tumours. The discrepancies in cause-effect relationships in the epidemiological studies - how do they arise?
The uncertainty about the relationship between the use of mobile phones (MPs: analogue and digital cellulars, and cordless) and the increase of head tumour risk can be solved by a critical analysis of the methodological elements of both the positive and the negative studies. Results by Hardell indicate a cause/effect relationship: exposures for or latencies from 65 10 years to MPs increase by up to 100% the risk of tumour on the same side of the head preferred for phone use (ipsilateral tumours) - which is the only one significantly irradiated - with statistical significance for brain gliomas, meningiomas and acoustic neuromas. On the contrary, studies published under the Interphone project and others produced negative results and are characterised by the substantial underestimation of the risk of tumour. However, also in the Interphone studies a clear and statistically significant increase of ipsilateral head tumours (gliomas, neuromas and parotid gland tumours) is quite common in people having used MPs since or for 65 10 years. And also the metaanalyses by Hardell and other Authors, including only the literature data on ipsilateral tumours in people having used MPs since or for 65 10 years - and so also part of the Interphone data - still show statistically significant increases of head tumours
Development and Validation of a Polish-Language Version of the Satisfaction with Relationship Status Scale (ReSta)
Mechanisms of resistance against PKC412 in resistant FLT3-ITD positive human acute myeloid leukemia cells
A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients
Heterochromatic distribution of HeT-A- and TART-like sequences in several Drosophila species
- …
