24 research outputs found

    Green Sturgeon Physical Habitat Use in the Coastal Pacific Ocean

    Get PDF
    The green sturgeon (Acipenser medirostris) is a highly migratory, oceanic, anadromous species with a complex life history that makes it vulnerable to species-wide threats in both freshwater and at sea. Green sturgeon population declines have preceded legal protection and curtailment of activities in marine environments deemed to increase its extinction risk. Yet, its marine habitat is poorly understood. We built a statistical model to characterize green sturgeon marine habitat using data from a coastal tracking array located along the Siletz Reef near Newport, Oregon, USA that recorded the passage of 37 acoustically tagged green sturgeon. We classified seafloor physical habitat features with high-resolution bathymetric and backscatter data. We then described the distribution of habitat components and their relationship to green sturgeon presence using ordination and subsequently used generalized linear model selection to identify important habitat components. Finally, we summarized depth and temperature recordings from seven green sturgeon present off the Oregon coast that were fitted with pop-off archival geolocation tags. Our analyses indicated that green sturgeon, on average, spent a longer duration in areas with high seafloor complexity, especially where a greater proportion of the substrate consists of boulders. Green sturgeon in marine habitats are primarily found at depths of 20–60 meters and from 9.5–16.0°C. Many sturgeon in this study were likely migrating in a northward direction, moving deeper, and may have been using complex seafloor habitat because it coincides with the distribution of benthic prey taxa or provides refuge from predators. Identifying important green sturgeon marine habitat is an essential step towards accurately defining the conditions that are necessary for its survival and will eventually yield range-wide, spatially explicit predictions of green sturgeon distribution

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway

    No full text
    Protein degradation by the ubiquitin system controls the intracellular concentrations of many regulatory proteins. A protein substrate of the ubiquitin system is conjugated to ubiquitin through the action of three enzymes, E1, E2 and E3, with the degradation signal (degron) of the substrate recognized by E3 (refs 1-3). The resulting multi-ubiquitylated substrate is degraded by the 26S proteasome. Here we describe the physiological regulation of a ubiquitin-dependent pathway through allosteric modulation of its E3 activity by small compounds. Ubr1, the E3 enzyme of the N-end rule pathway (a ubiquitin-dependent proteolytic system) in Saccharomyces cerevisiae mediates the degradation of Cup9, a transcriptional repressor of the peptide transporter Ptr2 (ref. 5). Ubr1 also targets proteins that have destabilizing amino-terminal residues. We show that the degradation of Cup9 is allosterically activated by dipeptides with destabilizing N-terminal residues. In the resulting positive feedback circuit, imported dipeptides bind to Ubr1 and accelerate the Ubr1-dependent degradation of Cup9, thereby de-repressing the expression of Ptr2 and increasing the cell's capacity to import peptides. These findings identify the physiological rationale for the targeting of Cup9 by Ubr1, and indicate that small compounds may regulate other ubiquitin-dependent pathways

    Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover

    Get PDF
    Micromonas strains of small prasinophyte green algae are found throughout the world’s oceans, exploiting widely different niches. We grew arctic and temperate strains of Micromonas and compared their susceptibilities to photoinactivation of Photosystem II, their counteracting Photosystem II repair capacities, their Photosystem II content, and their induction and relaxation of non-photochemical quenching. In the arctic strain Micromonas NCMA 2099, the cellular content of active Photosystem II represents only about 50 % of total Photosystem II protein, as a slow rate constant for clearance of PsbA protein limits instantaneous repair. In contrast, the temperate strain NCMA 1646 shows a faster clearance of PsbA protein which allows it to maintain active Photosystem II content equivalent to total Photosystem II protein. Under growth at 2 °C, the arctic Micromonas maintains a constitutive induction of xanthophyll deepoxidation, shown by second-derivative whole-cell spectra, which supports strong induction of non-photochemical quenching under low to moderate light, even if xanthophyll cycling is blocked. This non-photochemical quenching, however, relaxes during subsequent darkness with kinetics nearly comparable to the temperate Micromonas NCMA 1646, thereby limiting the opportunity cost of sustained downregulation of PSII function after a decrease in light
    corecore