120 research outputs found

    The prevention of contrast induced nephropathy by sarpogrelate in patients with chronic kidney disease: a study protocol for a prospective randomized controlled clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contrast-induced nephropathy (CIN) is a serious clinical problem associated with increased morbidity and mortality, particularly in patients with chronic renal insufficiency. Although some agents including hydration with saline are being prescribed to prevent renal deterioration in these high risk patients, their efficacy is not clearly defined and debatable. Therefore additional prophylactic pretreatments are needed.</p> <p>Methods/Design</p> <p>The present study aims to investigate differences in occurrence of CIN after sarpogrelate premedication in patients with chronic kidney disease (CKD). 268 participants, aged 20-85 years with a clinical diagnosis of CKD will be recruited. They will be randomly allocated to one of two conditions: (i) routine treatment without sarpogrelate, and (ii) routine treatment with sarpogrelate (a fixed-flexible dose of 300 mg/day). The primary outcome is the occurrence of CIN during 4 weeks after receiving contrast agent.</p> <p>Discussion</p> <p>As of May 2010, there were no registered trials evaluating the therapeutic potentials of sarpogrelate in preventing for CIN. If sarpogrelate decreases the worsening of renal function and occurrence of CIN, it will provide a safe, easy and inexpensive treatment option.</p> <p>Trial registration</p> <p>NCT01165567</p

    High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    Get PDF
    Objective: To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods: One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared.Results: The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions: CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses

    Contrast medium-induced nephropathy. Aspects on incidence, consequences, risk factors and prevention

    Get PDF
    Contrast media-induced nephropathy (CIN) is a well-known complication of radiological examinations employing iodine contrast media (I-CM). The rapid development and frequent use of coronary interventions and multi-channel detector computed tomography with concomitant administration of relatively large doses of I-CM has contributed to an increasing number of CIN cases during the last few years. Reduced renal function, especially when caused by diabetic nephropathy or renal arteriosclerosis, in combination with dehydration, congestive heart failure, hypotension, and administration of nephrotoxic drugs are risk factors for the development of CIN. When CM-based examinations cannot be replaced by other techniques in patients at risk of CIN, focus should be directed towards analysis of number and type of risk factors, adequate estimation of GFR, institution of proper preventive measures including hydration and post-procedural observation combined with surveillance of serum creatinine for 1-3 days. For the radiologist, there are several steps to consider in order to minimise the risk for CIN: use of “low-“ or “iso-osmolar” I-CM and dosing the I-CM in relation to GFR and body weight being the most important as well as utilizing radiographic techniques to keep the I-CM dose in gram iodine as low as possible below the numerical value of estimated GFR. There is as yet no pharmacological prevention that has been proven to be effective
    corecore