21 research outputs found

    Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    Get PDF
    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment

    The ICE inhibitor pralnacasan prevents DSS-induced colitis in C57BL/6 mice and suppresses IP-10 mRNA but not TNF-alpha mRNA expression

    No full text
    Previously we demonstrated an ameliorating effect of the interleukin-1beta converting enzyme (ICE) inhibitor pralnacasan on dextran sulfate sodium (DSS)-induced colitis. This study investigates the effects of pralnacasan on cytokine expression in DSS-induced colitis. Colitis was induced by oral administration of DSS. Mice were treated intraperitoneally with the ICE inhibitor pralnacasan (50 mg/kg body weight twice daily). Body weight as well as the presence of occult blood or diarrhea was monitored daily. Subgroups were sacrificed at days 4, 8, and 11 after the beginning of DSS application. Cytokine profiles in colonic tissue were analyzed on the protein level by ELISA and on the mRNA level by real time RT-PCR. Administration of DSS led to an increase in IL-18, IL-12, TNF-alpha, and IFN-gamma protein as well as IP-10 and TNF-alpha mRNA. The increase in IL-18 and IFN-gamma was reduced by ICE inhibition. Pralnacasan prevented DSS-induced colitis in C57BL/6 mice. In C57BL/6 mice, the DSS-induced increase in IP-10 mRNA, but not TNF-alpha mRNA, was completely prevented by ICE inhibition. In conclusion, prevention of colitis in C57BL/6 mice was associated with a suppresion of IP-10 mRNA, but not TNF-alpha mRNA expression, indicating that IL-18-mediated cytokine production is a key element in the pathogenesis of DSS-induced coliti
    corecore