4 research outputs found

    Lipopolysaccharide does not alter small airway reactivity in mouse lung slices

    Get PDF
    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 µg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases

    Protease-activated receptor-2 peptides activate neurokinin-1 receptors in the mouse isolated trachea

    No full text
    Protective roles for protease-activated receptor-2 (PAR2) in the airways including activation of epithelial chloride (Cl-) secretion are based on the use of presumably PAR(2)-selective peptide agonists. To determine whether PAR(2) peptide-activated Cl- secretion from mouse tracheal epithelium is dependent on PAR(2), changes in ion conductance across the epithelium [short-circuit current (I-SC)] to PAR(2) peptides were measured in Ussing chambers under voltage clamp. In addition, epithelium and endothelium-dependent relaxations to these peptides were measured in two established PAR(2) bioassays, isolated ring segments of mouse trachea and rat thoracic aorta, respectively. Apical application of the PAR(2) peptide SLIGRL caused increases in I-SC, which were inhibited by three structurally different neurokinin receptor-1 (NK1R) antagonists and inhibitors of Cl- channels but not by capsaicin, the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37), or the nonselective cyclooxygenase inhibitor indomethacin. Only high concentrations of trypsin caused an increase in I-SC but did not affect the responses to SLIGRL. Relaxations to SLIGRL in the trachea and aorta were unaffected by the NK1R antagonist nolpitantium (SR 140333) but were abolished by trypsin desensitization. The rank order of potency for a range of peptides in the trachea I-SC assay was 2-furoyl-LIGRL > SLCGRL > SLIGRL > SLIGRT > LSIGRL compared with 2-furoyl-LIGRL > SLIGRL > SLIGRT > SLCGRL (LSIGRL inactive) in the aorta relaxation assay. In the mouse trachea, PAR(2) peptides activate both epithelial NK1R coupled to Cl- secretion and PAR(2) coupled to prostaglandin E-2-mediated smooth muscle relaxation. Such a potential lack of specificity of these commonly used peptides needs to be considered when roles for PAR(2) in airway function in health and disease are determined
    corecore