27 research outputs found

    Phosphorus availability in chicken manure is lower with increased stockpiling period, despite a larger orthophosphate content

    No full text
    Background and aims: The relative proportions of phosphorus (P) forms present in manure will determine the overall availability of manure P to plants; however, the link between the forms of P in manures and manure P availability is unclear. This study compares the bioavailability and P speciation of three manures of different stockpiling duration: less than 1 month, 6 months and 12 months; manures were collected concurrently from a single poultry farm. Methods: Bioavailability to wheat in a glasshouse trial was measured using an isotopic dilution method with manure added at an application rate equivalent to 20 kg P ha-1. Phosphorus speciation was measured by 31P nuclear magnetic resonance (NMR) spectroscopic analysis of NaOH-EDTA extracts of the manures. Results: The addition of all manures significantly increased shoot biomass and P concentration, with the fresh manure having the greatest effect. Addition of the fresh manure resulted in the largest labile P pool, highest manure P uptake and manure P recovery, while the manure stockpiled for 12 months resulted in the lowest manure P uptake and manure P recovery. NMR analysis indicated that there was more monoester organic P, especially phytate, in manure stockpiled for shorter periods, while the proportion of manure P that was orthophosphate increased with stockpiling time. Conclusions: Together, these results imply that although the proportion of total P in the manures detected as orthophosphate was higher with longer stockpiling, only a fraction of this orthophosphate was plant-available. This suggests the availability of P from orthophosphate in manures decreases with longer stockpiling time in much the same way that P from orthophosphate in mineral fertilizer becomes less available in soil over time. © 2013 Springer Science+Business Media Dordrecht.C. A. E. Peirce, R. J. Smernik, T. M. McBeat

    Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture

    No full text
    Climate change is likely to affect the nature of pathogens/ chemicals in the environment and their fate and transport. We assess the implications of climate change for changes in human exposures to pathogens/chemicals in agricultural systems in the UK and discuss the effects on health impacts, using expert input and literature on climate change; health effects from exposure to pathogens/chemicals arising from agriculture; inputs of chemicals/pathogens to agricultural systems; and human exposure pathways for pathogens/chemicals in agricultural systems. We established the evidence base for health effects of chemicals/pathogens in the agricultural environment; determined the potential implications of climate change on chemical/pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of various contaminants. We merged data to assess the implications of climate change in terms of indirect human exposure to pathogens/chemicals in agricultural systems, and defined recommendations on future research and policy changes to manage adverse increases in risks
    corecore