14 research outputs found

    An Integrated Disease/Pharmacokinetic/Pharmacodynamic Model Suggests Improved Interleukin-21 Regimens Validated Prospectively for Mouse Solid Cancers

    Get PDF
    Interleukin (IL)-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK) and pharmacodynamic (PD) data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected “training” data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent “validation” data in melanoma and renal cell carcinoma-challenged mice (R2>0.90). Simulations of the verified model surfaced important therapeutic insights: (1) Fractionating the standard daily regimen (50 µg/dose) into a twice daily schedule (25 µg/dose) is advantageous, yielding a significantly lower tumor mass (45% decrease); (2) A low-dose (12 µg/day) regimen exerts a response similar to that obtained under the 50 µg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R2>0.89), thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic

    Patients with rheumatoid arthritis have an altered circulatory aggrecan profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) is a chronic auto-immune disease with extensive articular cartilage destruction. Aggrecan depletion, mediated by aggrecanases is one of the first signs of early cartilage erosion. We investigated, whether measurement of aggrecan and fragments thereof in serum, could be used as biomarkers for joint-disease in RA patients and furthermore characterized the fragments found in the circulation.</p> <p>Methods</p> <p>The study consisted of 38 patients, 12 males (62.2 ± 16.0 years) and 26 females (59.8 ± 20.7 years) diagnosed with RA: 41.5 ± 27.5 mm/h erythrocyte sedimentation rate (ESR), 38.4 ± 34.7 mg/ml C-reactive protein (CRP) and 4.8 ± 1.7 disease activity score (DAS) and 108 healthy age-matched controls. Aggrecan levels were measured using two immunoassays, i.e. the <sup>374</sup>ARGSVI-G2 sandwich ELISA measuring aggrecanase-mediated aggrecan degradation and the G1/G2 sandwich assay, detecting aggrecan molecules containing G1 and/or G2 (total aggrecan) We further characterized serum samples by western blots, by using monoclonal antibodies F-78, binding to G1 and G2, or by BC-3, detecting the aggrecanase-generated N-terminal <sup>374</sup>ARGSVI neo-epitope.</p> <p>Results</p> <p>Total aggrecan levels in RA patients were significantly decreased from 824.8 ± 31 ng/ml in healthy controls to 570.5 ± 30 ng/ml (31% decrease, P < 0.0001), as measured by the G1/G2 ELISA. Western blot analysis with F-78 showed one strong band at 10 kDa, and weaker bands at 25 and 45 kDa in both healthy controls and RA patients. In contrast, staining for aggrecanase-activity revealed only one strong band in RA patients of 45 kDa.</p> <p>Conclusion</p> <p>This is the first study, which characterizes different aggrecan fragments in human serum. The data strongly suggests that total aggrecan levels, i.e. aggrecan molecules containing G1 and/or G2 are lower in RA patients, and that RA patients have at least one specific subpopulation of aggrecan fragments, namely aggrecanse generated <sup>374</sup>ARGSVI fragments. Further clinical studies are needed to investigate the potential of G1/G2 as a structure-related biochemical marker in destructive joint-diseases.</p

    Abrolhos Bank Reef Health Evaluated by Means of Water Quality, Microbial Diversity, Benthic Cover, and Fish Biomass Data

    Get PDF
    The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the “paper park” of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens
    corecore