37 research outputs found

    An Integrated Disease/Pharmacokinetic/Pharmacodynamic Model Suggests Improved Interleukin-21 Regimens Validated Prospectively for Mouse Solid Cancers

    Get PDF
    Interleukin (IL)-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK) and pharmacodynamic (PD) data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected “training” data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent “validation” data in melanoma and renal cell carcinoma-challenged mice (R2>0.90). Simulations of the verified model surfaced important therapeutic insights: (1) Fractionating the standard daily regimen (50 µg/dose) into a twice daily schedule (25 µg/dose) is advantageous, yielding a significantly lower tumor mass (45% decrease); (2) A low-dose (12 µg/day) regimen exerts a response similar to that obtained under the 50 µg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R2>0.89), thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic

    Impact and relationship of anterior commissure and time-dose factor on the local control of T1N0 glottic cancer treated by 6 MV photons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate prognostic factors that may influence local control (LC) of T1N0 glottic cancer treated by primary radiotherapy (RT) with 6 MV photons.</p> <p>Methods</p> <p>We retrospectively reviewed the medical records of 433 consecutive patients with T1N0 glottic cancer treated between 1983 and 2005 by RT in our institution. All patients were treated with 6 MV photons. One hundred and seventy seven (41%) patients received 52.5 Gy in 23 fractions with 2.5 Gy/fraction, and 256 (59%) patients received 66 Gy in 33 fractions with 2 Gy/fraction.</p> <p>Results</p> <p>The median follow-up time was 10.5 years. The 10-year LC rates were 91% and 87% for T1a and T1b respectively. Multivariate analysis showed LC rate was adversely affected by poorly differentiated histology (Hazard Ratio [HR]: 7.5, <it>p </it>= 0.035); involvement of anterior commissure (HR: 2.34, <it>p </it>= 0.011); fraction size of 2.0 Gy (HR: 2.17, <it>p </it>= 0.035) and tumor biologically effective dose (BED) < 65 Gy<sub>15 </sub>(HR: 3.38, <it>p </it>= 0.017).</p> <p>Conclusions</p> <p>The negative impact of anterior commissure involvement could be overcome by delivering a higher tumor BED through using fraction size of > 2.0 Gy. We recommend that fraction size > 2.0 Gy should be utilized, for radiation schedules with five daily fractions each week.</p

    Exposure-response analyses of liraglutide 3.0 mg for weight management

    No full text
    Aims Liraglutide 3.0 mg, an acylated GLP‐1 analogue approved for weight management, lowers body weight through decreased energy intake. We conducted exposure‐response analyses to provide important information on individual responses to given drug doses, reflecting inter‐individual variations in drug metabolism, absorption and excretion. Methods We report efficacy and safety responses across a wide range of exposure levels, using data from one phase II (liraglutide doses 1.2, 1.8, 2.4 and 3.0 mg), and two phase IIIa [SCALE O besity and P rediabetes (3.0 mg); SCALE D iabetes (1.8; 3.0 mg)] randomized, placebo‐controlled trials (n = 4372). Results There was a clear exposure–weight loss response. Weight loss increased with greater exposure and appeared to level off at the highest exposures associated with liraglutide 3.0 mg in most individuals, but did not fully plateau in men. In individuals with overweight/obesity and comorbid type 2 diabetes, there was a clear exposure–glycated haemoglobin (HbA1c ) relationship. HbA1c reduction increased with higher plasma liraglutide concentration (plateauing at ∼21 nM ); however, for individuals with baseline HbA1c >8.5%, HbA1c reduction did not fully plateau. No exposure–response relationship was identified for any safety outcome, with the exception of gastrointestinal adverse events (AEs ). Individuals with gallbladder AEs , acute pancreatitis or malignant/breast/benign colorectal neoplasms did not have higher liraglutide exposure compared with the overall population. Conclusions These analyses support the use of liraglutide 3.0 mg for weight management in all subgroups investigated; weight loss increased with higher drug exposure, with no concomitant deterioration in safety/tolerability besides previously known gastrointestinal side effects

    Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test

    No full text
    Udgivelsesdato: 2010-FebSeveral articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of the OGTT is a difficult problem in need of further investigation. The present work aimed at investigating the power of SDEs to predict the first phase insulin secretion (AIR (0-8)) in the IVGTT based on parameters obtained from the minimal model of the OGTT, published by Breda et al. (Diabetes 50(1):150-158, 2001). In total 174 subjects underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of parameters in the oral minimal model (OMM) was performed using the FOCE-method in NONMEM VI on insulin and C-peptide measurements. The suggested SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlenbeck process, and the extended Kalman filter was implemented in order to estimate the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process caused improved description of the variation in the data as measured by the autocorrelation function (ACF) of one-step prediction errors. A main result was that application of SDE models improved the correlation between the individual first phase indexes obtained from OGTT and AIR (0-8) (r = 0.36 to r = 0.49 and r = 0.32 to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to the increased correlation also the properties of the indexes obtained using the SDE models more correctly assessed the properties of the first phase indexes obtained from the IVGTT. In general it is concluded that the presented SDE approach not only caused autocorrelation of errors to decrease but also improved estimation of clinical measures obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method is concluded to have high relevance not only in theory but also in practice

    Ethnic differences in insulin sensitivity, \u3b2-cell function, and hepatic extraction between Japanese and Caucasians: a minimal model analysis.

    No full text
    CONTEXT: Ethnic differences have previously been reported for type 2 diabetes. OBJECTIVE: We aimed at assessing the potential differences between Caucasian and Japanese subjects ranging from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) and to type 2 diabetes. DESIGN: This was a cross-sectional study with oral glucose tolerance tests to assess \u3b2-cell function, hepatic insulin extraction, and insulin sensitivity. PARTICIPANTS: PARTICIPANTS included 120 Japanese and 150 Caucasian subjects. MAIN OUTCOMES: Measures of \u3b2-cell function, hepatic extraction, and insulin sensitivity were assessed using C-peptide, glucose, and insulin minimal models. RESULTS: Basal \u3b2-cell function (\u3a6(b)) was lower in Japanese compared with Caucasians (P < .01). In subjects with IGT, estimates of the dynamic (\u3a6(d)) and static (\u3a6(s)) \u3b2-cell responsiveness were significantly lower in the Japanese compared with Caucasians (P < .05). In contrast, values of insulin action showed higher sensitivity in the Japanese IGT subjects. Hepatic extraction was similar in NGT and IGT groups but higher in Japanese type 2 diabetic subjects (P < .01). Despite differences in insulin sensitivity, \u3b2-cell function, and hepatic extraction, the disposition indices were similar between the 2 ethnic groups at all glucose tolerance states. Furthermore, the overall insulin sensitivity and \u3b2-cell responsiveness for all glucose tolerance states were similar in Japanese and Caucasians after accounting for differences in body mass index. CONCLUSION: Our study provides evidence for a similar ability of Japanese and Caucasians to compensate for increased insulin resistance
    corecore