12 research outputs found

    Common genetic variants on chromosome 9p21 are associated with myocardial infarction and type 2 diabetes in an Italian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genomic region on chromosome 9p21 has been identified as closely associated with increased susceptibility to coronary artery disease (CAD) and to type 2 diabetes (T2D) although the evidence suggests that the genetic variants within chromosome 9p21 that contribute to CAD are different from those that contribute to T2D.</p> <p>We carried out an association case-control study in an Italian population to test the association between two single nucleotide polymorphisms (SNPs) on the 9p21 locus, rs2891168 and rs10811661, previously reported by the PROCARDIS study, and respectively myocardial infarction (MI) and T2D. Our aim was to confirm the previous findings on a larger sample and to verify the independence of their susceptibility effects: rs2891168 associated with MI but not with T2D and rs10811661 associated with T2D but not with MI.</p> <p>Methods</p> <p>Genomic DNA samples of 2407 Italians with T2D (602 patients), who had had a recent MI (600), or had both diseases (600) and healthy controls (605) were genotyped for the two SNPs. The genotypes were determined by allelic discrimination using a fluorescent-based TaqMan assay.</p> <p>Results</p> <p>SNP rs2891168 was associated with MI, but not with T2D and the G-allele odds ratio (OR) was 1.20 (95% CI 1.02-1.41); SNP rs10811661 was associated with T2D, but not with MI, and the T-allele OR was 1.27 (95% CI 1.04-1.55). ORs estimates from the present study and the PROCARDIS study were pooled and confirmed the previous findings, with greater precision.</p> <p>Conclusions</p> <p>Our replication study showed that rs2891168 and rs10811661 are independently associated respectively with MI and T2D in an Italian population. Pooling our results with those reported by the PROCARDIS group, we also obtained a significant result of association with diabetes for rs10811661 in the European population.</p

    Mechanisms of disease: genetic insights into the etiology of type 2 diabetes and obesity.

    No full text
    Until recently, progress in identification of the genetic variants influencing predisposition to common forms of diabetes and obesity has been slow, a sharp contrast to the large number of genes implicated in rare monogenic forms of both conditions. Recent advances have transformed the situation, however, enabling researchers to undertake well-powered scans able to detect association signals across the entire genome. For type 2 diabetes, the six high-density genome-wide association studies so far performed have extended the number of loci harboring common variants implicated in diabetes susceptibility into double figures. One of these loci, mapping to the fat mass and obesity associated gene (FTO), influences diabetes risk through a primary effect on fat mass, making this the first common variant known to influence weight and individual risk of obesity. These findings offer two main avenues for clinical translation. First, the identification of new pathways involved in disease predisposition-for example, those influencing zinc transport and pancreatic islet regeneration in the case of type 2 diabetes-offers opportunities for development of novel therapeutic and preventative approaches. Second, with continuing efforts to identify additional genetic variants, it may become possible to use patterns of predisposition to tailor individual management of these conditions
    corecore