10 research outputs found

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels

    Phosphorylation of bovine papillomavirus E1 by the protein kinase CK2 near the nuclear localization signal does not influence subcellular distribution of the protein in dividing cells

    No full text
    The bovine papillomavirus E1 helicase is essential for viral replication. In dividing cells, DNA replication maintains, but does not increase, the viral genome copy number. Replication is limited by low E1 expression and an E1 nucleocytoplasmic shuttling mechanism. Shuttling is controlled in part by phosphorylation of E1 by cellular kinases. Here we investigate conserved sites for phosphorylation by kinase CK2 within the E1 nuclear localization signal. When these CK2 sites are mutated to either alanine or aspartic acid, no change in replication phenotype is observed, and there is no effect on the subcellular distribution of E1, which remains primarily nuclear. This demonstrates that phosphorylation of E1 by CK2 at these sites is not a factor in regulating viral DNA replication in dividing cells

    Nucleotide polymorphisms of the human papillomavirus 16 E1 gene

    No full text
    The E1 ORF is one of the most conserved regions in the human papillomavirus (HPV) genome. The complete E1 gene of the HPV16 genome was amplified with four overlapping primer sets in 16 high-grade (CIN II, III) and 13 low-grade cervical (CIN I) intraepithelial neoplasias as well as in one cervical cancer case. Sequence analysis of the E6 and E7 genes was also carried out in the same cervical samples in order to confirm the association between nucleotide sequence variations in the HPV16 E1 ORF and HPV16 variant lineages. Analysis of the E1 ORF revealed 27 nucleotide changes, and these changes were correlated with those found in HPV16 Asian American and African type II variants. Of these nucleotide variations, A1668G, G2073A, T2169C, T2189C, A2453T, C2454T, A2587T and G2650A were identified only in high-grade dysplasia cases. A phylogenetic tree of the E1 ORF and nucleotide sequence analysis of the E1, E6 and E7 genes revealed that intratypic nucleotide sequence polymorphisms located in the E1 ORF can be used to identify the major phylogenetic branch to which a HPV16 genome belongs. Moreover, amplification of the E1 ORF revealed a disruption between nucleotides 878 and 1523 in five high- and two low-grade cervical cases, indicating that integration of HPV DNA occurs at an early stage of viral infection

    Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2

    No full text
    corecore