8 research outputs found

    Testing The Trend Towards Specialization In Herbivore-host Plant Associations Using A Molecular Phylogeny Of Tomoplagia (diptera: Tephritidae)

    No full text
    Herbivorous insects are abundant and diverse and insect-host plant associations tend to be specialized and evolutionarily conserved. Some authors suggested that generalist insect lineages tend to become specialists, with host specialization leading to an evolutionary dead-end for the parasite species. In this paper, we have examined this tendency using a phylogenetic tree of Tomoplagia (Diptera: Tephritidae), a parasite of asteracean plants. We have tested the trend towards specialization in different hierarchical degrees of host specialization. The topology of the tree, the inference of ancestral hosts, and the lack of directional evolution indicated that specialization does not correspond to a phylogenetic dead-end. Although most Tomoplagia species are restricted to a single host genus, specialization does not seem to limit further host range evolution. This work emphasizes the advantages of the use of different levels of specialization and the inclusion of occasional hosts to establish a more detailed scenario for the evolution of this kind of ecological association. © 2005 Elsevier Inc. All rights reserved.353701711Aczél, M., Fruit flies of the genus Tomoplagia Coquillet (Diptera: Tephritidae) (1955) U. S. Natl. Mus. Proc., 104, pp. 321-411Amadon, D., Specialization and evolution (1943) Am. Nat., 77, pp. 133-141Azeredo-Espin, A.M.L., Schroder, R.F.W., Huettel, M.D., Sheppard, W.S., Mitochondrial-DNA variation in geographic populations of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera, Chrisomelidae) (1991) Experientia, 47, pp. 483-485Benson, W.W., Brown, K.S., Gilbert, L.A., Coevolution of plants and herbivores: Passion flower butterflies (1975) Evolution, 29, pp. 659-680Bernays, E.A., Evolution of feeding behaviour in insect herbivores: Success seen as different ways to eat without being eaten (1998) BioScience, 48, pp. 35-44Bernays, E.A., Host range in phytophagous insects: The potential role of generalist predators (1989) Evol. Ecol., 3, pp. 299-311Bernays, E.A., Graham, M., On the evolution of host specificity in phytophagous arthropods (1988) Ecology, 69, pp. 886-892Bremer, K., (1994) Asteraceae: Cladistics and Classification, , Timber Press Portland, OregonBrues, C.T., The selection of food-plants by insects, with special preference to lepidopterous larvae (1920) Am. Nat., 54, pp. 313-332Cavalli-Sforza, L.L., Edwards, A.W.F., Phylogenetic analysis: Models and estimation procedures (1967) Am. J. Hum. Genet., 19, pp. 122-257Clary, D.O., Goddard, J.M., Martin, S.C., Fauron, C.M., Wolstenholme, D.R., Drosophila mitochondrial DNA: A novel gene order (1992) Nucleic Acids Res., 10, pp. 6619-6637Clary, D.O., Wolstenholme, D.R., The mitochondrial-DNA molecule of Drosophila yakuba nucleotide sequence, gene organization, and genetic-code (1985) J. Mol. Evol., 22, pp. 252-271Coile, N.C., Jones Jr., S.B., Lychnophora (Composite: Vernonieae), a genus endemic to the brazilian planalto (1981) Brittonia, 33 (4), pp. 528-542Crespi, B.J., Sandoval, C.P., Phylogenetic evidence for the evolution of ecological specialization in Timena walking-sticks (2000) J. Evol. Biol., 13, pp. 249-262Dobler, S., Mardulyn, P., Pasteels, J.M., Rowell-Rahier, M., Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina (1996) Evolution, 50, pp. 2373-2386Dyer, L.A., Tasty generalists and nasty specialists? Antipredator mechanisms in tropical Lepidopteran Larvae (1995) Ecology, 76, pp. 1483-1496Efron, B., Harlloran, E., Holmes, S., Bootstrap confidence levels for phylogenetic trees (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 13429-13434Ehrlich, P.R., Raven, P.H., Butterflies and plants: A study in coevolution (1964) Evolution, 18, pp. 586-608Farrell, B., Mitter, C., Phylogenetic determinants of insect/plant community diversity (1993) Species Diversity in Ecological Communities, Historical and Geographical Perspectives, pp. 253-266. , R.E. Ricklefs D. Schluter University of Chicago Press ChicagoFarrell, B., Mitter, C., The timing of insect/plant diversification: Might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? (1998) Biol. J. Linnean Soc., 63, pp. 553-577Feder, J.L., Berlocher, S.H., Roethele, J.B., Dambroski, H., Smith, J.J., Perry, W.L., Gavrilovic, V., Aluja, M., Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 10314-10319Felsenstein, J., Evolutionary trees from DNA sequences: A maximum likelihood approach (1981) J. Mol. Evol., 17, pp. 368-376Felsenstein, J., Confidence limits on phylogenies and approach using the bootstrap (1985) Evolution, 39, pp. 783-791Fry, J.D., The evolution of host specialization: Are trade-offs overrated? (1996) Am. Nat., 148, pp. 85-S107Funk, D.J., Futuyma, D.J., Ortí, G., Meyer, A., Mitochondrial DNA sequences and multiple data sets: A phylogenetic study of phytophagous beetles: (Chrysomelidae: Ophraella) (1995) Mol. Biol. Evol., 12, pp. 627-640Funk, D.J., Futuyma, D.J., Ortí, G., Meyer, A., A history of host association and evolutionary diversification for Ophraela (Coleoptera: Chrysomelidae): new evidence from mitochondrial DNA (1995) Evolution, 49, pp. 1008-1017Funk, D.J., Filchak, K.E., Feder, J.L., Herbivorous insects: Model systems for the comparative study of speciation ecology (2002) Genetica, 116, pp. 251-267Futuyma, D.J., Keese, M.C., Scheffer, S.J., Genetic constraints and the phylogeny of insect-plant associations: Responses of Ophraella communa (Coleoptera: Chrysomelidae) to host plants of its congeners (1993) Evolution, 47, pp. 888-905Futuyma, D.J., Moreno, G., The evolution of ecological specialization (1988) Annu. Rev. Ecol. Syst., 19, pp. 207-233Futuyma, D.J., Walsh, J.S., Morton, T., Funk, D.J., Keese, M.C., Genetic variation in a phylogenetic context: Response of two specialized leaf beetles (Coleoptera: Chrysomelidae) to host plants of their congeners (1994) J. Evol. Biol., 7, pp. 127-146Gómez-Zurita, J., Juan, C., Petitpierre, E., The evolutionary history of the genus Timarcha (Coleoptera: Chrysomelidae) inferred from mitochondrial COII gene and partial 16S rRNA sequences (2000) Mol. Phylogenet. Evol., 14, pp. 304-317Gordon, D., Abajian, C., Green, P., Consed: A graphical tool for sequence finishing (1998) Genome Res., 8, pp. 195-202Headrick, D.H., Goeden, R.D., The biology of the nonfrugivorous tephritid fruit flies (1998) Annu. Rev. Entomol., 43, pp. 217-241Huelsenbeck, J., Crandall, K.A., Phylogeny estimations and hypothesis testing using maximum likelihood (1997) Annu. Rev. Ecol. Syst., 28, pp. 437-466Huelsenbech, J.P., Ronquist, F., Mr. Bayes: Bayesian inference of phylogenetic tree (2001) Bioinformatics Applications Note, 17, pp. 754-755Jaenike, J., Host specialization in phytophagous insects (1990) Annu. Rev. Ecol. Syst., 21, pp. 243-273Janz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the Tribe Nymphalini (2001) Evolution, 55, pp. 783-796Janz, N., Nylin, S., The role of female search behavior in determining host plant range in plant feeding insects: A test of the information processing hypothesis (1997) Proc. R. Soc. Lond., 264, pp. 701-707Janz, N., Nylin, S., Butterflies and plants: A phylogenetic study (1998) Evolution, 52, pp. 486-502Jermy, T., Evolution of insect/host plant relationships (1984) Am. Nat., 124, pp. 609-630Jermy, T., Evolution of insect-plant relationships-a devil's advocate approach (1993) Entomol. Exp. Appl., 66, pp. 3-12Keese, M.C., Performance of two monophagous leaf feeding beetles (Coleoptera: Chrysomelidae) on each other's host plant: Do intrinsic factors determine host plant specialization? (1998) J. Evol. Biol., 11, pp. 403-419Kelley, S.T., Farrell, B., Is specialization a dead-end? the phylogeny of host use in Dendroctonus bark beetles (Scolytidae) (1998) Evolution, 52, pp. 1731-1743Korneyev, V., Phylogeny of the subfamily tephritinae: Relationships of the tribes and subtribes (1999) Fruit Flies (Tephritidae) Phylogeny and Evolution of Behavior, pp. 549-580. , A. Martin A.L. Norrbom CRC press Boca Raton, FloridaLewinsohn, T.M., (1987) Plantas Hospedeiras, Heterogeneidade Ambiental e Diversidade de Insetos Fitofagos, , PublicaçÔes Aciesp 32Lewinsohn, T.M., Insects in flower heads of Asteraceae in southeast Brazil: A tropical case study on species richness (1991) Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, pp. 525-560. , P.W. Price T.M. Lewinsohn G.W. Fernandes W.W. Benson Wiley/Interscience New YorkLopez-Vaamonde, C., Godfray, C.J., Cook, J.M., Evolutionary dynamics of host-plant use in a genus of leaf-mining moths (2003) Evolution, 57, pp. 1804-1821MacArthur, R.H., Lewins, R., Competition, habitat selection, and character displacement in a patchy environment (1964) Proc. Natl. Acad. Sci. USA, 51, pp. 1207-1210MacLeish, N.F.F., Revision of Eremanthus (Compositae, Vernonieae) (1987) Ann. Mo. Bot. Gard., 74, pp. 265-290Mayr, E., The emergence of evolutionary novelties (1997) Evolution and the Diversity of Life, pp. 88-113. , Harvard University Press Cambridge, MassachusettsNosil, P., Transition rates between specialization and generalization in phytophagous insects (2002) Evolution, 56, pp. 1701-1706Pagel, M., Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters (1994) P. Roy Soc. Lond. B Bio., 255, pp. 37-45Pagel, M., Inferring the historical patterns of biological evolution (1999) Nature, 401, pp. 877-884Pagel, M., The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies (1999) Syst. Biol., 48, pp. 612-622Pagel, M., Statistical analysis of comparative data (2000) TREE, 15, p. 418Percy, D.M., Page, R.D.M., Cronk, Q.C.B., Plant-insect interactions: Double-dating associated insect and plant lineages reveals asynchronous radiations (2004) Syst. Biol., 53, pp. 120-127Posada, D., Crandall, K.A., Modeltest: Testing the model DNA substitution (1998) Bioinformatics, 14, pp. 817-818Prado, P.I., Lewinsohn, T.M., Genus Tomoplagia (Diptera: Tephritidae) in the Serra do Cipó, MG, Brazil: Host ranges and notes of taxonomic interest (1994) Revta. Bras. Entomol., 38, pp. 669-680Prado, P.I., Lewinsohn, T.M., Almeida, A.M., Norrbom, A.L., Buys, B.D., MacEdo, A.C.C., Lopes, M.B., The fauna of Tephritidae (Diptera) from capitula of Asteraceae in Brazil (2002) Proc. Wash. Entomol. Soc., 104, pp. 1006-1027Prado, P.I., Norrbom, A.L., Lewinsohn, T.M., New species of Tomoplagia Conquillett (Diptera: Tephritidae) from Capitula of Asteraceae in Brazil. 2004 (2004) Neotrop. Entomol., 33 (2), pp. 189-211Rambaut, A., (2002) Sequence Alignment Editor, V. 2.0, , http://evolve.zoo.ox.ac.uk/software/Se-Al/main.html, Copyright Univ. OxfordRausher, M.D., Co-evolution and plant resistance to natural enemies (2001) Nature, 411, pp. 857-864Rodriguez, F., Oliver, J.L., Marin, A., Medina, J.R., The general stochastic model of nucleotide substitutions (1990) J. Theo. Biol., 142, pp. 485-501Roininen, H., Tahvanainen, J., Host selection and larval performance of two willow-feeding sawflies (1989) Ecology, 70, pp. 129-136Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Mol. Biol. Evol., 4, pp. 406-425Sanderson, M.J., Shaffer, H.B., Troubleshooting molecular phylogenetic analyses (2002) Annu. Rev. Ecol. Syst., 33, pp. 49-72Schluter, D., Price, T., Mooers, A., Ludwig, D., Likelihood of ancestor states in adaptive radiation (1997) Evolution, 51, pp. 1699-1711Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P., Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain reaction primers (1994) Ann. Entomol. Soc. Am., 87, pp. 651-701Smiley, J., Plant chemistry and the evolution of host specificity: New evidences from Heliconius and Passiflora (1978) Science, 201, pp. 745-747Sitnikova, T., Rhzetsky, A., Nei, M., Interior-branch and the bootstrap tests of phylogenetic trees (1995) Mol. Biol. Evol., 12, pp. 319-333Spanos, L., Koutroumbas, G., Kotsyfakis, M., Louis, C., The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata (2000) Insect Mol. Biol., 9, pp. 139-144Swofford, D.L., (1998) PAUP* - A Computer Program for Phylogenetic Inference Using Maximum Parsimony (* and Other Methods). Version 4, , Sinauer Associates, Sunderland, MassachusettsTakahashi, K., Nei, M., Efficiencies of fast algorithms of phylogenetic inference under the criteria of Maximum Parsimony, Minimum Evolution and Maximum Likelihood when a large number of sequences are used (2000) Mol. Biol. Evol., 17, pp. 1251-1258Termonia, A., Hsiao, T.H., Pasteels, J.M., Milinkovitch, M.C., Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 3909-3914Thompson, J.N., (1994) The Coevolutionary Process, , University of Chicago Press ChicagoWahlberg, N., The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae) (2001) Evolution, 55, pp. 522-537Wasserman, S.S., Futuyma, D.J., Evolution of host plant utilization in laboratory populations of the southern cowpea weevil, Callosobruchus maculates Fabricius (Coleoptera: Bruchidae) (1981) Evolution, 35, pp. 605-617Yang, Z., Ranalla, B., Bayesian phylogenetic inference using DNA sequences: A Markovchain Monte Carlo method (1997) Mol. Biol. Evol., 14, pp. 717-72

    Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands

    No full text
    Oceanic islands have played a central role in biogeography and evolutionary biology. Here, we review molecular studies of the endemic terrestrial fauna of the Hawaiian archipelago. For some groups, monophyly and presumed single origin of the Hawaiian radiations have been confirmed (achatinelline tree snails, drepanidine honeycreepers, drosophilid flies, Havaika spiders, Hylaeus bees, Laupala crickets). Other radiations are derived from multiple colonizations (Tetragnatha and Theridion spiders, succineid snails, possibly Dicranomyia crane flies, Porzana rails). The geographic origins of many invertebrate groups remain obscure, largely because of inadequate sampling of possible source regions. Those of vertebrates are better known, probably because few lineages have radiated, diversity is far lower and morphological taxonomy permits identification of probable source regions. Most birds, and the bat, have New World origins. Within the archipelago, most radiations follow, to some degree, a progression rule pattern, speciating as they colonize newer from older islands sequentially, although speciation often also occurs within islands. Most invertebrates are single-island endemics. However, among multi-island species studied, complex patterns of diversification are exhibited, reflecting heightened dispersal potential (succineids, Dicranomyia). Instances of Hawaiian taxa colonizing other regions are being discovered (Scaptomyza flies, succineids). Taxonomy has also been elucidated by molecular studies (Achatinella snails, drosophilids). While molecular studies on Hawaiian fauna have burgeoned since the mid-1990s, much remains unknown. Yet the Hawaiian fauna is in peril: more than 70 per cent of the birds and possibly 90 per cent of the snails are extinct. Conservation is imperative if this unique fauna is to continue shedding light on profound evolutionary and biogeographic questions

    DNA and Double-Stranded Oligonucleotides

    No full text
    corecore