17 research outputs found

    Seasonal Production and Biomass of the Seagrass, Halodule wrightii Aschers. (Shoal Grass), in a Subtropical Texas Lagoon

    No full text
    A study of Halodule wrightii in a shallow subtropical Texas lagoon was performed to obtain seasonal data on its physiological ecology. Leaf production and biomass dynamics of H. wrightii were intensively monitored along with the underwater light environment at a 1.2-m depth study site over a 21-month period from June 1995 to February 1997. The annual photosynthetically active radiation (PAR) flux of 6,764 mol m−2 year−1 was more than twice as high as 2,400 mol m−2 year−1, the minimum annual PAR required for maintenance of growth. As light intensity declined, blade chlorophyll a/b ratios increased suggesting that the plants were photo-adapting. Seasonal trends were evident in shoot growth and biomass. Compared to other Halodule populations in Texas, H. wrightii in LLM displayed slow growth and low biomass, high leaf tissue N content, and low C/N ratio but high N/P ratio of 38 suggesting that the plants were phosphorus-limited

    The proton-Omega correlation function in Au plus Au collisions at root s(NN)=200 GeV

    No full text
    We present the first measurement of the proton–Ω correlation function in heavy-ion collisions for the central (0–40%) and peripheral (40–80%) Au + Au collisions at sNN=200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton–Ω correlation function are sensitive to the presence of a nucleon–Ω bound state. These predictions are based on the proton–Ω interaction extracted from (2+1)-flavor lattice QCD calculations at the physical point. The measured ratio of the proton–Ω correlation function between the peripheral (small system) and central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with theoretical calculation slightly favors a proton–Ω bound system with a binding energy of ∼ 27 MeV. Keywords: Correlations, Femtoscopy, NΩ dibaryo

    Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC

    No full text
    Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p + Au and d + Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data

    Measurement of inclusive J/ψ suppression in Au+Au collisions at √sNN = 200 GeV through the dimuon channel at STAR

    No full text
    J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at √sNN = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT > 5 GeV/c relative to that in p + p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP
    corecore