214 research outputs found

    Apoferritin nanocage as drug reservoir: is it a reliable drug delivery system?

    Get PDF
    Apoferritin is a complex protein with a number of possibilities for drug delivery and drug targeting technologies, as it could be considered as the future self-assembling, not-toxic protein drug delivery carrier. Few years ago, this concept was a reality; nowadays, after more than 10 years of research, a clear painting of Apoferritin, loaded with drugs, is lacking, in terms of protocols of formulation, characterization, drug release and application. Therefore, a critical evaluation and overall understanding of Apoferritin is due to speed up the possibilities for its translatability into clinical application

    The role of protamine amount in the transfection performance of cationic SLN designed as a gene nanocarrier

    Get PDF
    Cationic solid lipid nanoparticles (SLN) have been recently proposed as non-viral vectors in systemic gene therapy. The aim of this study was to evaluate the effect of the protamine amount used as the transfection promoter in SLN-mediated gene delivery. Three protamine-SLN samples (Pro25, Pro100, and Pro200) prepared by adding increasing amounts of protamine were characterized for their size, zeta potential, and protamine loading level. The samples were evaluated for pDNA complexation ability by gel-electrophoresis analysis and for cytotoxicity and transfection efficiency by using different cell lines (COS-I, HepG2, and Na1300). The size of SLN was ~230 nm and only Pro200 showed few particle aggregates. Unlike the Pro25 sample with the lowest protamine loading level, the others SLN samples (Pro100 and Pro200) exhibited a good ability in complexing pDNA. A cell-line dependent cytotoxicity lower than that of the positive control PEI (polyethilenimmine) was observed for all the SLN. Among these, only Pro100, having an intermediate amount of protamine, appeared able to promote pDNA cell transfer, especially in a neuronal cell line (Na1300). In conclusion, the amount of protamine as the transfection promoter in SLN affects not only the gene delivery ability of SLN but also their capacity to transfer genes efficiently to specific cell types

    Protein cage nanostructure as drug delivery system: magnifying glass on apoferritin

    Get PDF
    New frontiers in nanomedicine are moving towards the research of new biomaterials. Apoferritin (APO), is a uniform regular self-assemblies nano-sized protein with excellent biocompatibility and a unique structure that affords it the ability to stabilize small active molecules in its inner core. Areas covered: APO can be loaded by applying a passive process (mainly used for ions and metals) or by a unique formulative approach based on disassemby/reassembly process. In this article, we aim to organize the experimental evidence provided by a number of studies on the loading, release and targeting. Attention is initially focused on the most investigated antineoplastic drug and contrast agents up to the most recent application in gene therapy. Expert opinion: Various preclinical studies have demonstrated that APO improved the potency and selectivity of some chemotherapeutics. However, in order to translate the use of APO into therapy, some issues must be solved, especially regarding the reproducibility of the loading protocol used, the optimization of nanocarrier characterization, detailed understanding of the final structure of loaded APO, and the real mechanism and timing of drug release

    AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study

    Get PDF
    An outstanding aspect of pharmaceutical nanotechnology lies in the characterization of nanocarriers for targeting of drugs and other bioactive agents. The development of microscopic techniques has made the study of the surface and systems architecture more attractive. In the field of pharmaceutical nanosystems, researchers have collected vital information on size, stability, and bilayer organization through the microscopic characterization of liposomes. This paper aims to compare the results obtained by atomic force microscopy, environmental scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy to point out the limits and advantages of these applications in the evaluation of vesicular systems. Besides this comparative aim, our work proposes a simple confocal laser scanning microscopy procedure to rapidly and easily detect the liposomal membrane

    Nanoparticle transport across the blood brain barrier

    Get PDF
    ABSTRACT: While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes

    Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders

    Get PDF
    Brain diseases and injuries are growing to be one of the most deadly and costly medical conditions in the world. Unfortunately, current treatments are incapable of ameliorating the symptoms let alone curing the diseases. Many brain diseases have been linked to a loss of function in a protein or enzyme, increasing research for improving their delivery. This is no easy task due to the delicate nature of proteins and enzymes in biological conditions, as well as the many barriers that exist in the body ranging from those in circulation to the more specific barriers to enter the brain. Several main techniques are being used (physical delivery, protein/enzyme conjugates, and nanoparticle delivery) to overcome these barriers and create new therapeutics. This review will cover recently published data and highlights the benefits and deficits of possible new protein or enzyme therapeutics for brain diseases

    In Vivo Therapeutic Potential of Mesenchymal Stromal Cells Depends on the Source and the Isolation Procedure

    Get PDF
    SummaryOver the last several years, mesenchymal stromal cells (MSCs) have been isolated from different tissues following a variety of different procedures. Here, we comparatively assess the ex vivo and in vivo properties of MSCs isolated from either adipose tissue or bone marrow by different purification protocols. After MSC transplantation into a mouse model of hindlimb ischemia, clinical and histological analysis revealed that bone marrow MSCs purified on adhesive substrates exerted the best therapeutic activity, preserving tissue viability and promoting formation of new arterioles without directly transdifferentiating into vascular cells. In keeping with these observations, these cells abundantly expressed cytokines involved in vessel maturation and cell retention. These findings indicate that the choice of MSC source and purification protocol is critical in determining the therapeutic potential of these cells and warrant the standardization of an optimal MSC isolation procedure in order to select the best conditions to move forward to more effective clinical experimentation
    • …
    corecore