
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=iedd20

Download by: [Universita degli Studi di Modena e Reggio Emilia ] Date: 30 September 2016, At: 06:58

Expert Opinion on Drug Delivery

ISSN: 1742-5247 (Print) 1744-7593 (Online) Journal homepage: http://www.tandfonline.com/loi/iedd20

Protein cage nanostructure as drug delivery
system: magnifying glass on apoferritin

Daniela Belletti, Francesca Pederzoli, Flavio Forni, Maria Angela Vandelli,
Giovanni Tosi & Barbara Ruozi

To cite this article: Daniela Belletti, Francesca Pederzoli, Flavio Forni, Maria Angela
Vandelli, Giovanni Tosi & Barbara Ruozi (2016): Protein cage nanostructure as drug
delivery system: magnifying glass on apoferritin, Expert Opinion on Drug Delivery, DOI:
10.1080/17425247.2017.1243528

To link to this article:  http://dx.doi.org/10.1080/17425247.2017.1243528

Accepted author version posted online: 30
Sep 2016.

Submit your article to this journal 

View related articles 

View Crossmark data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/80171883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tandfonline.com/action/journalInformation?journalCode=iedd20
http://www.tandfonline.com/loi/iedd20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17425247.2017.1243528
http://dx.doi.org/10.1080/17425247.2017.1243528
http://www.tandfonline.com/action/authorSubmission?journalCode=iedd20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=iedd20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17425247.2017.1243528
http://www.tandfonline.com/doi/mlt/10.1080/17425247.2017.1243528
http://crossmark.crossref.org/dialog/?doi=10.1080/17425247.2017.1243528&domain=pdf&date_stamp=2016-09-30
http://crossmark.crossref.org/dialog/?doi=10.1080/17425247.2017.1243528&domain=pdf&date_stamp=2016-09-30


Publisher: Taylor & Francis 

Journal: Expert Opinion on Drug Delivery 

DOI: 10.1080/17425247.2017.1243528 

 

 

 

 

 

 

Protein cage nanostructure as drug delivery system: magnifying glass on apoferritin 

Daniela Belletti1, Francesca Pederzoli1, Flavio Forni1, Maria Angela Vandelli1, Giovanni 

Tosi1*, Barbara Ruozi1 

 

1Laboratory of Nanomedicine, Te.Far.T.I., Department of Life Sciences, University of 

Modena and Reggio Emilia, Via Campi 103, 41124, Modena, Italy 

 

*Corresponding author:  

Giovanni Tosi, Tel: +39.059.2058563; Email: gtosi@unimore.it 

 
 Abstract  

Introduction: New frontiers in nanomedicine are moving towards the research of new 

biomaterials. Apoferritin (APO), is a uniform regular self-assemblies nano-sized protein with 

excellent biocompatibility and a unique structure that affords it the ability to stabilize small 

active molecules in its inner core.  

Areas covered: APO can be loaded by applying a passive process (mainly used for ions and 

metals) or by a unique formulative approach based on disassemby/reassembly process. In this 



article, we aim to organize the experimental evidence provided by a number of studies on the 

loading, release and targeting. Attention is initially focused on the most investigated 

antineoplastic drug and contrast agents up to the most recent application in gene therapy. 

Expert opinion: Various preclinical studies have demonstrated that APO improved the 

potency and selectivity of some chemotherapeutics. However, in order to translate the use of 

APO into therapy, some issues must be solved, especially regarding the reproducibility of the 

loading protocol used, the optimization of nanocarrier characterization, detailed understanding 

of the final structure of loaded APO, and the real mechanism and timing of drug release.  

 

Keywords: Apoferritin, Chemotherapeutics, Disassembly/reassembly, Nano-cage, Passive 

loading, Structural characterization 

 
Article highlights box  

• APO is a self-assembled molecule highly conserved in mammalian and with a high 

biocompatibility. 

• APO offers the possibility to guest within its inner core drugs of low molecular weight 

and positively charged. The mechanism of drug loading can follow passive 

absorption/penetration processes or pH-dependent disassembly/reassembly protocols.  

• Only a limited number of drugs (mainly chemotherapeutics containing metals or 

anthracycline) are successfully loaded into APO, showing promising results in 

preclinical animal models.  

• APO is characterized by long lifetime and innate affinity for tumor cells due to its 

ability to bind human TtR1 receptor, over-expressed on cells in rapid proliferation.  

• Modern biotechnological approaches lead to the production of recombinant protein 

able to link molecules (active and/or targeting agents) directly to the protein structure, 



thus improving the efficacy of loaded APO and expanding its applicability to different 

field of therapy. 

  



1. Introduction 

The production and the development of drug delivery systems (DDS), completely 

biocompatible, atoxic, and biodegradable is a challenging issue. Thus, modern nanomedicine 

focused its interest on alternative biomaterials as proteins.  

The nature offers different types of multimeric proteins able to self-assemble in protein shell 

surrounding a hollow interior cavity with shapes and structures within nanometer scale [1]. 

From a biological point of view, protein cages play numerous functions as the storage, 

protection and delivery of viral genomes, metal storage, and protein refolding.  

Their applicability as DDS depends on the technological formulative aspects as handy, 

reproducible, scalable methods of formulation and drug encapsulation as well as on the 

efficient purification process. 

In this contest, advanced competences in the field of biotechnology help a sustainable large-

scale production of proteins using cell factories, making this technology highly desirable and 

economically advantageous for different technological applications.  

One of the most investigated classes of proteins applicable in drug delivery is the ferritin 

superfamily and particularly Apoferritin (APO) [2,3]. In this review, starting from the 

analyses of the structure of APO, we focus on the mechanism of drug loading in APO cage 

and the versatility of this protein as DDS in therapy.  

 

2. Ferritin superfamily 

Ferritins are a superfamily of proteins which is highly conserved in eukaryotic organisms and 

ubiquity diffused in humans and other mammals, plants, fungi, and bacteria [4]. 

The role of ferritin is fundamental for life; it is the first protein involved in iron storage and 

seizure, thus playing a role of reservoir for metabolic iron.  



The crystal structures of many Ferritins were deeply characterized since the beginning of 

1990s by the combination of Transmission Electron Microscopy (TEM), small angle X ray 

scattering (SAXS) and proteomic techniques [4-7]. 

In spite of large variations in amino acid sequences from bacteria to humans, ferritins 

essentially show the same architecture. Focusing on mammalians, the ferritin’s protein cage 

(450-500 kDa) is composed of 24 polypeptide subunits, with different molecular weights [8] 

and with specific functions [9]. Heavy (H) units (molecular weight of 21 KDa) play a major 

role in iron oxidation while light (L) units (molecular of 19 KDa) are more involved in the 

efficient nucleation and mineralization of iron. Of note, H and L subunits are highly 

homologous, and they can form a spherical unit in any proportion [10]. 

The ratio between the two types of chain in Ferritin is different with respect to the species and 

the tissues [11 as in relation to physiological state, as the amount of H chains increases in 

inflammation and other pathological conditions in response to cytokine stimuli [12,13]. 

Moreover, as reported in the text below (Chapter 4.1), differences in the type of receptor-

binding are present between H/L Ferritin/Apoferritin as only H-Ferritin or H-Apoferritin are 

able to bind TtR1 receptors whereas L-Ferritin and L-Apoferritin bind SCARA5 receptors. 

The subunits self-assemble to form a spherical cage with outer diameter of 12 nm, a 2 nm 

thick protein shell and a internal cavity with diameter of 8 nm. Overall, the protein molecular 

mass is 450KDa and it is able to store up to 4500 Fe(III) atoms [4,14]. 

The inner and the outer space are connected by pores size of about 0.3-0.5 nm [15, 16]: 8 of 

these pores defined “3-fold channels” are hydrophilic and they lead iron to diffuse into (and 

out of) the core; the other 4 pores defined “4 fold channels” are hydrophobic and their 

function is still unclear [17,18].  

Finally, it is worth to consider that during the protein reassemblation, amino acidic content 

differs from inner to outer cavities. Generally, ferritin have a preponderance of acidic over 



basic residues with high level of non apolar groups thus the isoelettric point is generally in the 

range 4.5-5.5).  

The ferritin surface resulted highly reactive and some substances can bind to the apoferritin 

surface through hydrogen bonding (non-ionic molecules) or electrostatic interactions (ionic 

molecules) [19]. 

 

3. From Ferritin to APO the applicability as DDS 

As above described, from a physiologic point of view, ferritin can be described as Fe (III) 

reservoir. Aiming to exploit APO as DDS, the inner cavity should be free and able to 

accommodate the cargo, thus the resident iron has to be removed from the cavities. 

Demineralization of ferritin occurred by reductive dissolution and subsequent chelation of 

Fe(II) producing APO [20,21] which maintains the same features of Ferritin in terms of inner 

and outer structures.   

The octahedral scaffold of APO displays typical hydrophilic and hydrophobic channels 

connecting inner cavities to the external surface and which are proposed as the route for 

inward and outward of metals and other molecules (therapeutic agents such as imaging 

agents) [22].  

This mechanism of accumulation into the core [23] is named “passive loading”. Unless 

initially investigated, being a rapid and scalable loading process, it results often less efficient 

and not able to stabilize therapeutic molecules with large molecular weights, which result 

prevalently adsorbed on the surface. Therefore, deeper studies on strategies of improving drug 

loading with active loading, or at least by means of strong modification in the protocols of 

Ferritin assembly were conducted over the last 10 years. In this contest, a number of studies 

mostly aimed to elucidate the permeation mechanism of organic molecules into APO and the 

impact of chemico-physical characteristics on drug loading efficiency. As example, NMR 

relaxation techniques were employed to investigate the diffusion of molecules devoid of net 



charge and with 18-7500 Da MW (i.e. water, DMSO, glucose, maltose, maltotriose, 

maltoteraose, maltopentaose and polyethylene glycol) into the protein cavity [24]. The authors 

demonstrated that the channel structure is sufficiently flexible to allow the penetration of 

molecules even larger than their own size (3-4 Å), but with maximum dimensions typical of 

the maltose (Mw: 342 Da, corresponding to a diameter of 13 Å) [24]. 

Electron paramagnetic resonance spectroscopy analysis were employed to study the diffusion 

of small and differently charged nitroxide organic probes (7-9 Å of diameter) to the central 

cavity of the ferritin, showing that the diffusion inside the protein is not purely passive (not 

only linked to the concentration gradient between the inside and outside of the protein) but 

also strictly dependent on their respective charge and the polarity. Only positively charged 

probes penetrate into the protein through the 3-fold channels, while not polar molecules bind 

the hydrophobic regions of the protein only on in its outer surface [25,26].  

Aiming to extend the number of applications, the research moves through alternative methods 

to load drug and investigate the dynamic of disassembly and reassembly of the protein 

nanocage. 

Thanks to a large number of intra- and inter-subunit salt bridges and hydrogen bonds, the 

APO structure is known for its stability: i) over heating condition (up to 85°C) [27]; ii) 

amongst a wide pH range (3.40-10) [28]; iii) in presence of high ionic concentrations; iv) in 

presence of high concentrations of denaturing agents [29,30]. 

Even if highly stable to chemical and physical denaturants, the APO architecture can be 

disassembled in response to pH variation and then restored, almost completely, by returning 

the pH back to the “physiological” conditions (pH 7.4). A number of hypotheses to describe 

the structural changes during disassembly and reassembly of protein were proposed.  

One of the first theories hypothesized that APO remains stable in the range of pH 2.8-10.6. 

On the contrary, at lower pH (1.6-2.8) or higher pH (10.6-13.0), a drastic reduction of MW, 

which can be related to the presence disassembled subunits, occurs [31]. 



A still open question is related to the exact pH at which protein starts its disassembling 

process. Some authors suggest that a progressive process [32] takes place; this event consists 

of cleavage of non-covalent bonds as a consequence of a conformational rearrangement of the 

protein [30]. Along with the decrease of pH, the outer surface of APO becomes positively 

charged (due to the protonation of the carboxylic groups of amino acid), leading to the 

progressive loosing of subunits forming holes in the spherical structure which switch from the 

inside to the outside [31]. By combining SAXS data and 3D structural reconstruction, it was 

shown that more the pH decreases and more the holes become numerous and larger, finally 

generating rodlike structures at pH 2 [28]. 

In these conditions, APO is completely disassembled into its subunits and allows to 

molecules/drug present in solution to interact with the chains.  

To lead sub units to reassemble and to form the native conformation, it is pivotal to restore the 

native electrostatic potential, thus, the solution needs to be buffered to the pH to 

“physiological” values [33]. Within this reassembly process, drug loading takes places as the 

drug molecules are entrapped into the spherical structure (Fig.1).  

In turns, aiming to expand the drug loading possibilities, some authors chose to move to 

different pH values, especially in the basic range. Notwithstanding less conformational data 

are available regarding the basic dissociation of APO, it was supposed starting over pH 10.6 

and caused by the de-protonation and re-arrangement of tyrosine residues. A high level of 

attention should be posed on monitoring pH values, as continuing the basification over pH 

12.4 lead to an irreversible alkaline hydrolysis of peptide bonds [34], disabling any possible 

recovery of native conformation [31]. 

 

4. Pharmacokinetics of APO as DSS 

After parenteral administration the pharmacokinetic profile of APO was investigated in tumor 

bearing model. Drug-loaded APO are rapidly distributed into the bloodstream reaching small 



capillaries. These protein DDS do not cross normal vessels, as only molecule smaller than 3 

nm are allowed to pass the endothelial cells by means of transcellular route [35], but their low 

diameter (less than 20 nm) is sufficient to avoid macrophages capture. This drastically 

reduces a-specific uptake by the reticular endothelial system (RES) [36] and assures to keep 

the protein longer into bloodstream circulation.  

Membranes of endothelial cells of blood vessels expose receptors that recognize APO and 

control both iron uptake and transferrin passage from vessel to tissues. H and L subunits show 

some differences in receptor affinity, as the H subunit specifically binds the receptor of 

transferrin (TfR1) with a wild distribution in human cells while L subunit binds to the 

Scavenger Receptor Class A Member 5 (SCARA5) firstly localized in macrophages, retina 

and hepatocytes [10,37].  

As evident, the protein composition is pivotal to define the APO destiny and, at the same 

time, the well-known over-expression of TfR1 in many cancer cells (about 100-fold respect to 

normal tissue) [38,39] guarantees an intrinsic site-specific targeting potential of APO 

nanocage for tumor.  

Moreover, tumor produces much more growing factors, leading to the presence of blood 

capillaries which tend to be disorganized, oversized, and leaky. As consequence, a large 

number of drug molecules and small structure (as APO) can be effectively driven to cancer 

tissue and stick onto pathological cells.  

Also the mechanism of APO interaction with cells and especially with tumor cells was 

investigated, in vitro using CACO-2 cells, showing that APO exploits clathrin-dependent 

endocytosis [40], accumulates into endosomes and releases the protein cargo into cytoplasm 

as a consequence of acidification of the compartment, which is responsible of the progressive 

dissociation of APO [41].  

 

4.1 APO in drug delivery, the tumor case 



A number of anticancer drugs suffer poor selectivity for neoplastic cells leading to dose-

limiting side effects, which compromise clinical outcomes. 

.  

Unfortunately, only limited number of drugs were investigated as well-defined drug 

properties are needed: i) controlled molecular weight (typically in the range 300-600 Da); ii) 

positive charged at physiological pH thus able to produce electrostatic interaction with the 

inner negatively charged protein cavity. In this view, DOXO possesses good properties 

(MW= 544 Da; and pKa= 7.34 (phenol); 8.46 (amine); 9.46 (est). Different operative 

conditions were screened in order to optimize its loading into APO, in particular the effect of 

the buffer, the ionic strength and the protein concentration during the dissociation process.  

During the last decades, the major interest was dedicated to the investigation of the 

development of loaded APO as DDS for anticancer molecules (Table 1). Among current used 

chemioterapeutics with low bioavability and selectivity some of them display chemico-

physical characteristics (low MW and cationic charge at physiologic pH) suitable for 

stabilization into APO. Moreover, thanks to the innate affinity for tumor cells the 

encapsulation is supposed to enhance the cell interaction with the tumor cells thus reducing 

the side and not-target accumulation and side effects. Considering this particular cancer 

targeting, H-ferritin should be used in order to produce cages able to really and successfully 

target cancer human cells. Notably, mouse models of cancer should not be taken into 

consideration, due to the presence of different receptors. 

 

Gefinitinib, an epidermal grown factor (EGFR) receptor tyrosine kinase inhibitor (MW 447 

Da), was passively loaded in APO. Drug resulted probably distributed in the inner and outer 

part of the protein cage (totally 10 molecules for each APO), thus the release starts at 

physiological pH and maximizes at pH 2 in correspondence with the protein disassembly. 



Authors demonstrated that Gefinitinib/APO induced cytotoxicity in breast cancer cell lines 

over-expressing both TtR1 and HER-2 receptors whit a profile comparable to that of free drug 

[42].  

A strong effort in the research was focused on strategies to force structured molecules to 

stably enter the APO core. In some particular cases (i.e. doxorubicin and mainly Gd), for 

molecules with appropriate MWs, some authors proposed a pre-complexation of the molecule 

with a metal in order to use the natural affinity of metal for the inner core of APO as driving 

force to maximize the passage through the 3-fold channels.  

Doxorubicin (DOXO), a wide spectrum anticancer antibiotic with affinity for different metals 

was previously pre-complexed with Cu(II), and efficiently loaded by simple incubation in 

APO systems (Cu/DOXO/APO)[43,44]. These strategy increases the drug loading efficiency 

in APO compared by simple DOXO/APO (30:100 DOXO:APO w/w ratio in presence of Cu 

respect to 8:100 DOXO:APO w/w ratio in absence of metal) [45]. Cu/DOXO/APO keeps both 

the dimension and the morphology of DOXO/APO and APO alone and no aggregates were 

observed. The release of the drug in physiological conditions, showed a typical biphasic 

profile characterized by an initial bust effect (about 80% of drug) and absence of drug release 

over 48 h. These data could indicate that the metal-drug complex is mostly adsorbed on the 

surface of protein. Notwithstanding technological data seems to suggest only a limited ability 

to protect DOXO, in vitro and in vivo tests on tumor models showed that DOXO/APO 

nanocages, targeted to integrin Rvβ3 (a tumor angiogenesis biomarker) by RGD peptide 

anchored on APO surface, displayed a better therapeutic profile, resulting in a longer 

circulation half-life, higher tumor uptake, better tumor growth inhibition, and less 

cardiotoxicity than free DOXO [45]. 

A second strategy proposed to force the drug into the protein core consists of disassembly-

reassembly process. The natural metal binding site present in the inner core of APO can be 

used as driving force to stabilize some metal-containing compounds. In this contest, platinum 



based anticancer drugs could be efficiently encapsulated into APO after dissociation at pH 2 

and reconstitution at physiologic pH. 

Cisplatin and carboplatin were loaded with the aim to reduce the systemic toxicity and high 

tumor resistance [46]. Through ICP-MS analysis authors demonstrated that about 2 and 5 

molecules of cisplatin and carboplatin respectively became part of the protein structure, even 

if not clear evidences about the rate between internalization and absorption were reported. In a 

further study, these data were corroborated by a deeper characterization of platinum loaded 

APO (oxaliplatinum) and evaluating the effect on a cancer cell line overexpressing transferrin 

receptor. Data highlighted the low toxicity of APO on cancer cells and the rapid decreased of 

cellular viability as a consequence of internalization of loaded protein, thus suggesting the 

potentiality of APO to overcome the mechanism of resistance typical of this type of metal 

based anticancer drug [35]. 

As alternative, cisplatin was stabilized into APO after dissociation at more handy and “stable” 

formulative conditions, as weak alkaline pH [47]. Once tested on cancer cells cisplatin loaded 

into APO showed the ability to induce cytotoxicity through the same apoptosis pathway of 

free drug. Even if it is not clearly proved the exact localization of the drug within the APO, 

the evidence that APO slows down the biological response at short time respect to free drug, 

suggests that the protein plays an important role in controlling the drug release over the time. 

Disassembly-reassembly process was also applied to load drugs in APO without pre-

complexation with metal. To date, only limited number of drugs were investigated as well-

defined drug properties are needed: i) controlled molecular weight (typically in the range 300-

600 Da); ii) positive charged at physiological pH thus able to produce electrostatic interaction 

with the inner negatively charged protein cavity. In this view, DOXO possesses good 

properties (MW= 544 Da; and pKa= 7.34 (phenol); 8.46 (amine); 9.46 (est). Different 

operative conditions were screened in order to optimize its loading into APO, in particular the 



effect of the buffer, the ionic strength and the protein concentration during the dissociation 

process.  

Interestingly, the use of glycine-acetate buffer (pH 2.5) is the one more efficacious approach 

in disassembling APO without any effect related to the initial protein concentration [48].  

Since only H chain showed affinity for cancer cells through the binding with transferrin 

receptor, by means of an elegant combination of chemical engineering and fermentation 

technology, different types of mammalian ferritin variants were formulated by self-

assembling by only H subunits (H-APO) [49]. Thus, H-APO was loaded with DOXO 

following both the previously reported acidic [50,51] or basic dissociation protocols [52]. The 

complex DOXO loaded H-APO (DOXO/H-APO), tested in vitro, was compared in term of 

efficacy with free DOXO and with clinical approved liposome loaded DOXO formulation 

(Doxil®).  

The “innate” targeting ability of the protein cage was confirmed as DOXO/H-APO showed 

better ability to mediate efficient and rapid interactions with cancer cells than the other 

control formulations [50,51]. Some conflicting data derived from in vitro distribution studies; 

DOXO/H-APO rapidly entered in a colon cancer cell line accumulating in lysosomes where 

DOXO is gradually released and subsequently translocated into nucleus [52]. Differently, in a 

liver carcinoma cellular line, DOXO/H-APO accumulated rapidly into nucleus through a 

specific interaction of H subunit with receptor exposed on nuclear membrane. Accordingly, 

DOXO intercalates DNA causing higher and more rapid cytotoxicity in cancer cells respect to 

controls (DOXO or Doxil) [50-51].  

We could speculate on the different biological response and mechanism of cellular 

accumulation as consequence of multiple aspects, especially relating to the sensibility of 

tumor type and to the effect of the architecture and surface proprieties of loaded APO 

formulated applying different protocols. As evident, more efforts are needed to completely 

characterize these new entities. 



To go further, DOXO/H-APO, obtained by means of basic dissociation protocol, was in vivo 

tested aiming to investigate pharmacokinetics profile and toxicity in mice bearing tumor 

(colon cancer cells). Namely, DOXO loaded into APO showed 10 fold higher AUC and tumor 

accumulation with respect to free drug and Doxil and reduced the drug concentration in 

healthy tissues (muscle, lung, kidney, spleen and most importantly heart). In addition, 

DOXO/H-APO led to a significant reduction in tumor growth two-fold higher than Doxil® 

[52].  

The protocols for encapsulation of DOXO are now used as a template. Recently atropine and 

carbachol, two molecules active on muscarinic receptors, involved in the development of 

pancreatic tumor, was loaded into APO cage. All studied molecules show similar MW 

(carbachol=183 Da; atropine=290 Da) and pKa (carbachol=12.5; atropine=4.5), suggesting 

loading efficiencies similar to DOXO case. Authors described an efficient accumulation both 

in vitro and in vivo at the tumor site, a partial suppression of tumor development and a 

reduction of toxicity if compared with the treatment with free drugs [53]. 

To ameliorate the affinity of APO for cancer cells, some authors proposed the surface 

modification by the insertion of target moieties as antibodies or peptides.  

APO has a fair versatility regarding chemical reactivity: in fact, a variety of chemical groups, 

e.g. primary amines, carboxylates, and thiols present on the external and internal surface, can 

be linked either genetically [29,45] and/or chemically [54,55]. Interestingly, after surface 

modification, APO diameter generally increased and the surface proprieties change (zeta-

potential, hydrophilicity). As a consequence, the cellular interaction appeared to be more 

driven by the presence of ligands exposed onto the surface than by the “innate” tumor affinity 

of APO.  

That way, a complex of daunorubicin (DAUNO) with negatively charged polypeptide PLLA 

(poly-L-aspartic acid) [24,56] was incorporated into APO after a partial disassembling at pH 5 

and reassembly at physiological pH. To target solid tumor cells, the surface of APO was 



engineered (by means of NHS/EDC protocol) with hyaluronic acid able to specifically bind 

CD44. The efficacy of this engineered nanocage was in vitro tested on a lung cancer cells 

overexpressing CD44 and a control cell line, not expressing any antigen. Modified nanocages 

were safe and tolerable for both cell lines, but it was clearly demonstrated that the cellular 

uptake was strongly driven by the binding with the cellular antigen. Briefly, DAUNO/APO 

accumulated only in CD44 positive cell line and both the cellular uptake and cytotoxicity 

were sensible to the pre-incubation with free antigen (which means inhibiting the cell specific 

binding) [56]. 

In a second example, APO loaded with cisplatin proposed by Xing and collaborators [35] was 

conjugated through a NHS-PEG-Mal cross-linker with an antibody selective to a proteoglycan 

expressed on the surface of melanoma cells (CSPG4). The new modified vectors showed a 

significant increase in both their molar mass and diameters (33 nm Vs 13 nm of native APO). 

In vitro studies confirmed that modified APO specifically bound melanoma cells expressing 

CSPG4(+), but not CSPG4(-) breast cancer cells and, accordingly, in vivo study showed a 

delayed tumor growth in model mice of melanoma. On the contrary, the tumor size of breast 

tumor, which does not over-expressed the specific antigen, was only marginally affected [57].  

Recently APO was proposed as non-viral system to stabilize and protect small interfering 

RNA (siRNA). SiRNA are characterized by high MW and negatively charges, features that 

hampered a stable internalization into the protein core. Taking advantage of the protein 

recombinant technology, APO was modified aiming to orderly expose cationic peptides on its 

surface. Thus, protamine-derived peptides were inserted as moieties able to complex and 

capture siRNA; besides, APO was also modified with penetrating peptides to enhance the 

target delivery to tumor cells.  

The experiments clearly highlighted that after modified-APO/siRNA complexation, the 

targeting peptides exposed on the protein surface drove the complex-cellular interaction and 



siRNA accumulated into the cell cytoplasm, thus opening to a great potential for further 

applications of APO in gene therapy applied to cancer treatment (Fig. 2; Table 1) [58].  

 

 

4.2 Application of APO in diagnosis 

Imaging agents are among those compounds that can be successfully loaded into the interior 

cavity of APO protein (Table 2).  

Magnetic Resonance Imaging (MRI) is a non-invasive imaging method for tumor diagnosis, 

however most of the diagnostic agents suffers from a lack of selectivity, low proton relaxivity 

and higher toxicity after administration [59]. 

APO could act as dual-functional tools allowing both the use of protein shell to target tumors 

and the ability in loading probes within the internal core to image tumors. 

Gadolinium (GD) is one of the most used contrast agent in clinical and experimental settings; 

thus a number of authors proposed the formulation of water suspended APO-GD formulation 

with high NMR longitudinal relaxivity similar to clinically approved GD-chelates. [59-62]. 

The technology employed in order to stabilize this contrast agent, described for the first time 

more than 10 years ago, was based on a well-described acidic protocol (dissociation at pH 2) 

and the use of a neutral chelates (GD-HPDO3A) [59].  

To improve tumor targeting, the surface of APO/GD-HPDO3A was engineered via 

streptavidin-biotin technology with an antibody directed to neural cell adhesion molecules 

(NCAM), overexpressed during the angiogenesis in endothelial cells. After in vivo 

administration, this new contrast agent was stable for few hours with a relaxation efficiency 5-

fold higher with respect to the free probe, showing an increase in selectivity for tumor vessels 

[62]. 

In a more recent work, in order to maximize the loading efficiency, GD-HPDO3A was 

replaced with a positively charged GD-Me2-DO2A. With the aim to assure a stable insertion 



into the cavity, the process was modified by adding GD complex during the acidification 

stage (at pH 4). Finally, the surface decoration of GD loaded APO with dextran lead to the 

accumulation of APO in transplanted tumor region in mice due to the exploitation of EPR 

effect [60]. 

Also Mn ions could be used as contrast agent in MRI. Through the stabilization into APO it 

has been demonstrated the improving in relaxitivities [63, 64]. These non invasive imaging 

tools were applied as MRI sensor for different kinds of tumor. Taking advantage of the 

reduced expression of SCARA5 (ine of the APO cellular receptor) into hepatoma cells respect 

to health hepatocites, Geninatti and co-workers demonstrated the possibility to discriminate 

between tumor lesion and monitor the hepatic tumor progression with a sensitivity similar to 

commercial probe (Gd-BOTA) [65]. A similar structure was also developed for the early 

diagnoses and imaging of melanoma cells. The increased melanin production in cancer cells 

correspond to an increased reduction of Mn (III) to Mn (II) (by the oxidation of L-DOPA to 

melanin) thus producing an high relaxivities and contrast during MRI investigation [66]. 

Also iron is another optimal contrast agent for MRI. Autologous ferritins have been 

successfully investigated as a MRI contrast agent. One of the first example reported described 

the use of a cationized ferritins for MR imaging of kidneys (obtained after coupling with N, N 

dimethyl-1,3 propanediamine (DMPA) that after iv administration accumulated in the kidneys 

because the glomerular basement membrane is negatively charged [67]. More recently ferritin 

was investigated as MRI contrast agent in neurodegenerative disorders because of the 

documented alterated iron metabolism in many neurodegeneration (particularly Alzheimer’s 

disease and Huntington’s disease [68]. As example of this application in vivo experiments in 

mice demonstrated that it is possible to increase the iron expression (thus the MRI signal) in 

nerve cells of mice after transfection of nerve cells using lentiviral and adenovirus vectors 

expressing transferrin [69] (for a complete review on this point see ref. 70). Unless some 

application reported, generally endogenous ferritin shows low relativity index if compared to 



synthetic iron oxide nanoparticles [71]. Human recombinant H-APO offers the possibility to 

act as suitable platform for synthesis and encapsulation of magnetite nanoparticles (Fe3O4), 

leading to the obtainment of optimal contrast agent for MRI for tumor diagnoses. Starting 

from the first studies on APO formulation containing an iron core in the form of magnetite 

(Fe3O4) [72-73], the research moved to the surface engineering aiming to achieve improved 

tumor selectivity. That way, magnetoferritin was modified using ligand able to target tumor 

markers such as RGD-4C that can specifically target tumor angiogenesis via binding to 

integrin molecules on vascular endothelium [74] melanocyte-stimulating hormone (MSH), or 

epidermal growth factor (EGF) [75,76]. Besides the surface modification to increase the 

tumor detection, other imaging modalities, such as fluorescence imaging and positron 

emission tomography (PET) were investigated [77]. 

Recently, APO loaded with Cu64 and Cy5 was modified with RGD4C peptide anchored to 

the ferritin surface by conjugation with the surface amines. This structure was able to target 

the tumor, by means of RGD-integrin interaction and the enhanced permeability and retention 

(EPR) effect [78].  

 

 

4.3 Application of Apo as theranostic tool 

The growing knowledge and advances in nanomedicine drive the recent research in 

formulating systems containing simultaneously both drugs and imaging agents. The 

combination of therapy and diagnoses in a single drug delivery system is now emerging as 

theranostic approach.  

This strategy can find applications for various different purposes, as to monitor the 

biodistribution and the target site accumulation of nanomedicines, to visualize and quantify 

drug release, and to assess the efficacy of the therapeutic treatment [79,80]. 



The design of a theranostic nanosystems could be obtained by following different protocols in 

terms of drug loading processes and insertion of the diagnostic agents (Table 3).  

The DOXO/APO systems characterized by a natural affinity for tumor were largely studied 

and recently were modified onto their surface with magnetic particles by means of 

streptavidin-biotin technology. This approach preserved the natural loading ability of APO 

and it avoided any possible incompatibility between drug and diagnostic agent. Authors 

demonstrated that modified DOXO/APO was sensible to the application of a magnetic field, 

thus enabling also a pH-dependent release of the drug and opening the pave to a possible in 

vivo application in the treatment and diagnoses of tumors [54]. 

More recently a DOXO/APO complex was specifically designed as theranostic agent for 

prostate cancer. Briefly, the surface was double engineered with an antibody direct to anti 

PMSA (prostate specific membrane antigen) and with gold nanoparticles. The complex 

coverage of protein seems to protect the cargo from undesired premature release in the 

bloodstream; moreover, once tested in vitro, this new carrier assured a nice selectivity for 

prostate cancer cells preserving healthy cells from the drug toxicity [81]. 

A different approach is based on a contemporary loading into the inner cavity of the protein of 

diagnostic and drug molecules.  

The cytostatic drug 5-fluorouracil (5-FU), being characterized by a low molecular weight, 

rapidly leak from the APO cavity; thus to better stabilize the encapsulation, [82] proposed a 

simultaneous loading with gold nanoparticles (AU-NPs, 3nm of diameter) known for their 

optical and photothermal proprieties. 5-FU enters trough hydrophilic protein pores and once 

into the protein core binds AU-NPs via electrostatic interaction. This strategy avoided the 

leaking of 5-FU under physiological condition and promotes the drug release only after 

accumulation of APO inside the intracellular acidic compartments. In a very complete and 

worthy in vitro study, the complex was demonstrated to be able to increase the cytotoxic 



profile of the drug in different tumor cell lines, pointing out the wide applicability of the new 

therapeutic entities.  

Similarly, curcumin, a multi-target drug with potent antioxidant proprieties, was loaded into 

APO simultaneously with GD through an acidic dissociation protocol, obtaining about 9 and 

0.4 molecules of curcumin and GD respectively loaded into APO, with a consequent increase 

in APO diameter of about 66% (from 12 to 19 nm). In presence of curcumin, the gadolinium 

complex conserves its typical relaxivities and rapidly accumulates into liver (passive 

targeting). Based on this peculiar distribution, authors proposed the vector as a theranostic 

agent for a variety of liver diseases (Fig. 3) [83].  

 

4.4 A look over cancer, other possible applications of Apo as DDS 

The versatility of APO was recently exploited for the potentiality of antigen presentation onto 

the surface and immune stimulation in vaccines formulation. 

Generally, vaccines for immunization standard schedules are stably prepared and protocols of 

production are well standardized, but, for rapidly mutating-pathogens (as the influenza virus), 

it is necessary to prepare new complex vaccines on an annual basis to avoid possible 

circumvention of the immune system by mutated pathogen. 

The subunits of APO offer different regions tolerant to peptide insertion; these regions were 

therefore modified to obtain proteins expressing exogenous components that are able to 

conserve the ability to re-organize into spherical nanocage [84].  

Following this approach, APO was synthetized in a controlled manner in terms of quantity 

and location of substituent. By selecting the site for protein insertion, it is possible to expose 

the antigens on the outer surface [77-78] or both inner and outer [85]. From a technological 

point of view, new vaccines were characterized by using PCS ant TEM to prove spherical 

shape and presence of the exposed antigen.  



To evaluate the real efficacy of these new entities in comparison with licensed inactivated 

vaccines, different in vitro and in vivo tests were performed. Generally, after administration in 

mice, those APO exposing the antigen protein onto the outer surface induced a higher CD8+ 

and CD4+ T cell proliferative response and therefore their transformation in functional T cells 

[86].  

In view of expanding the applicability of APO in therapy, Zhang and coworkers exploited the 

applicability of APO in enzyme stabilization. Considering the large MW and steric hindrance 

of the molecule to be loaded, the internalization into the protein core appeared difficult, thus 

the enzyme glucose oxidase (GOx) (chosen as model enzyme) was immobilized onto the 

protein surface. Authors demonstrated that GOx linked on the surface through a biotin-

streptavidin approach retained most of its activity up to two weeks and resulted stable to 

exposition to high temperatures (up to 50°C). This study presents a novel approach to enhance 

stability and activity of enzyme with promising application in different therapy but also in 

biological assay [87]. 

Finally, in a recent paper aiming to explore the applicability of APO in brain disease therapy, 

H-Apo was tested on a cerebellar organotypic culture demonstrating high affinity for 

astrocyte cell and a rapid and massive accumulation into nuclei [50].  

 

Table 3: APO utilization in therapy 

5. Conclusion 

APO, featured by high stability, special and reproductive structure, auto-assembly ability and 

biocompatibility, is certainly one of the most investigated and interesting structures proposed 

in the modern scenario of nanomedicines.  

From the beginning of its history (less than 15 years) as material for drug delivery, its 

applicability was investigated within the field of cancer medicine due to its natural affinity for 

iron receptor, largely distributed on cells in rapid division. Unfortunately, based on its specific 



conformation and small internal spaces, only a limited number of chemotherapeutics (mainly 

belonging to anthracycline family as daunomycin and doxorubicin or contrast agent for tumor 

diagnoses and resulted suitable for successful loading into APO cage. Aiming to broaden the 

field of APO application, two main technological innovations were proposed: i) the 

engineering the protein surface by means of linkage of molecules able to drive the destiny of 

the protein cage; ii) the use of protein reactivity to link the drug or the active molecules 

directly on the surface. That way, APO became object of investigations in other fields of 

nanomedicine as gene therapy, immunology or liver pathology. 

 

6. Expert opinion 

Despite extensive promises, much work is needed before clinical translation of APO. As 

example, analyzing literature data, even if interestingly biological data are reported supporting 

the efficacy of this DDS, the study of the architecture and the structure of loaded APO are still 

at early stages. This situation, which represents the major limitation is translatability of APO 

to become DDS, is principally caused by unclear protocols for APO formulation and un-clear 

chemico-physical, morphological and technological characterization and it frequently 

generates conflicting outputs.  

Points to be focused with major attention are related to the nature and narrow size of APO 

complex and to the evidence that the analytical technique commonly used to characterize 

synthetic DDS as liposomes or nanoparticles (TEM, AFM, SEM, PCS, DSC etc) are unable to 

completely demonstrate structure, architecture and, in particular, the presence of drug or 

ligands onto APO surface. 

These data relating to chemico-physical and morphological characterization of APO 

formulations are essential to determine the fate and the perspective of any DDS, as any 

change in surface proprieties, even small differences in chains re-arrangements could strongly 



affect the interaction with serum proteins, recognition by immune systems, impacting on the 

cage biocompatibility and also on the ability to transport drug to the site of action.  

Currently, within their experimental plan only few studies are considering the evaluation of 

the effective recovery of conformation after the loading and disassembly process. Generally, 

when investigated, this issue on the final APO structure is approached by applying far-UV 

circular dichroism (CD). CD permits to evaluate the presence and the distribution of helical 

structures into the new protein entities. Despite these data are surely reliable, the results are 

not representative of the real integrity of protein after loading or disassembly/reassembly 

process.  

To overcome these limits, X-ray diffraction characterization, even if expensive and sometimes 

difficult to be rendered, could be considered as the best choice for the characterization of 

protein structural conformation. As an example, a study performed by SAXS technique 

showed clearly that protein reassembly process couldn’t be totally complete after strong 

acidification; under pH 2.4 the protein completely loses its spherical structure that cannot be 

recovered. The pH limit for pseudo-reversible restoration of the quaternary structure was set 

at 2.66 [28].  

One of the best example of an almost complete study of APO formulation is represented by a 

recent work [88] in which cisplatin loaded APO were formulated by applying the same 

method proposed by Ji and coworkers [47] and were submitted to a deep structural 

characterization by means of X-ray analyses and elaboration of data. By comparing loaded 

and unloaded samples with native APO, the authors confirmed that the overall structure 

(shape, polarity/hydrophobicity, volume and electrostatic potential of the surface) remained 

stable after the formulation process. Notably, comparing native and cisplatin-loaded APO, the 

most relevant structural differences were detected close to the site of drug loading and in 

particular at the His 132, found to be the metal-binding site.  



This work represents an important keystone for further investigations aiming to confirm the 

maintenance of the structural integrity of the protein, in particular regarding the encapsulation 

of non-metal drug with large MW.  

Furthermore, another point to be investigated aiming to improve the chances of translatability 

of APO as drug delivery systems is related to the drug release and in particular to the changes 

in morphology and architecture of APO cage during and after the release of the drugs. To our 

knowledge, poor information are given on this topic which obviously impacts on several 

technological key-features of APO drug delivery systems, as the efficiency in drug release, 

the possibility of governing/modifying the drug release and also the biocompatibility of APO 

after the release of the drugs. These aspects are still far from an overall evaluation and 

therefore need to be considered with a major interest. 

As final consideration, it seems almost clear that the improvement and the consecration of 

potentialities of APO application in different fields of drug targeting must be obtained by an 

extensive collaboration among researchers in the field of technology, chemical-physical 

characterization and physicians.  
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Fig 1: Graphical representation of the mechanisms for drug loading into APO. 

Fig 1: Graphical representation of the mechanisms for drug loading into APO. A) APO formed by H/L subunit can be passively loaded by 
simple incubation with a drug solution. In function of the MW of the drug, different loading dynamics could be supposed. B) APO structure 
can be broken down to subunits at low or high pH, incubated with drug and finally the structure can be reassembled once the pH is tuned 
back to neutral lead the drug molecules to be trapped into the protein inner core. 

 

  



 

Fig.2: Schematic illustration of APO application in therapy. 

Fig.2: Schematic illustration of APO application in therapy. A) Different kind of active molecules were loaded of chemically linked on the 
surface of APO. These systems were applied for drug delivery and targeting, imaging and theranostic applications. B) Due to the intrinsic 
affinity for tumor cells loaded APO was mainly applied in cancer treatment, however recently this technology is applied in other field of 
research (immunotherapy, brain disease, enzyme replacement therapy).   

 

 

  



 

Fig.3. Theranostic Applications: 

 

Figure 3. Theranostic Applications:  a) co-encapulation of active molecules (i.e. anticancer 5-FU, anti-oxidant curcumin) and contract agents 
(i.e. gold nanoparticles, Gd) into APO cage; b) encapsulation of anticancer molecule (i.e. doxorubicin) and surface engineering with multiple 
ligands for targeting and detection 

 

 

 



Drug 
Method of 

encapsulatio
n 

Surface 
ligand 

Source of 
APO 

Outcomes/Short comings 

1.Chemico-
physical and 
technological 
studies  

2. In vitro 
(VT)/in vivo 
(VV) model  
 
Test adopted 

Structural/technologica
l end point 
 
Focus to solve 

Biological end 
points 

Ref 

 
 
 
Gefitinib 
 

Passive 
loading at pH 
7.2 

 Recombinan
t 

TEM, UV-VIS, 
MALDI, gel 
electrophoreses  

 

VT: breast cancer 
cells (SKBR3 and 
MDA-MB-231). 
 
 
LSCM,FACS, 
MTT test 

Spherical cage of 12nm, 
stabilizing 10 molecules 
of drug.  
 
To solve: localization of 
the drug.  

VT: cellular 
internalization 
mediated by 
interaction with 
the TfR1 
receptor; 
selective 
antitumor 
activity in 
HER2 
overexpressing 
cells. 

[42
] 

Doxorubicin Pre-
complexation 
with Cu and 
incubation 
with intact 
APO 

RGD Recombinan
t  
(bacterial) 

AFM, DLS, gel 
filtration 
chromatography
, Fluorescence 
spectrometry  
 

VT: Human 
glioblstoma cell 
line (U87MG). 
CLFM, MTT test 
VV: WT and mice 
bearing U87MG 
cells. 
 
Pharmacokinetics
; tissue 
distribution; 
histology; tumor 
volume  

Cage of 18.7 nm with a 
loading efficiency of 
73%  
 
 
 
 
To solve: localization of 
the drug. 

VT: cellular 
internalization 
and 
cytotoxicity 
concentration 
dependent. 
VV: increased 
T(1/2) with 
respect to free 
drug.  
Accumulation 
into tumor 
tissue mediated 

[45
] 



by RGD-
integrin 
interaction.  
Tumor growth 
inhibition 
respect controls 
(APO Vs saline 
or free dug). 

Doxorubicin Disassembly 
in glycin 
buffer(pH 
2.5) followed 
by reassembly 
at 
physiological 
pH 

 Horse spleen gel 
electrophoreses, 
Fluorescence 
spectrometry 

 Drug loading of 23 
molecules of drug.  
 
To solve: structural 
conformation 

 [48
] 

Doxorubicin Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH 

 Recombinan
t (H-Human) 

UV-VIS, gel 
electrophoreses 

  

VT: human colon 
adenocarcinoma 
cell line (Caco-2), 
human liver 
carcinoma cell 
line (HepG2). 
 
LSCM and WB. 
 

 VT: Rapid 
cellular uptake 
and nuclear 
translocation of 
loaded APO  
 
 

[50
] 

Doxorubicin Disassembly 
at acidic pH 
followed by 
reassembly at 
physiological 
pH 

 Recombinan
t  
(H-Human) 

Fluorescence 
spectrometry 
 
 

VT: Hela cells 
and breast cancer 
cells (MDA 
MB468).  
 
 
 

Cage stabilizing 28 
molecules of drug; long 
term controlled of drug 
release (up to 72 h) in 
PBS pH 7. 
 
To solve: structural 

VT: Rapid 
cellular 
internalization 
and 
cytotoxicity 
(Apo Vs free 
dug)  

[51
] 



LSCM, MTT 
 

conformation   
 
 
 

Doxorubicin Disassembly 
in urea buffer 
followed by 
reassembly at 
physiological 
pH 

 Recombinan
t  
(bacterial) 

TEM, DLS, 
UV-VIS, 
HPLC-UV. 
 
  
 

VT: human colon 
cancer cell line 
(HT-29).  
CLFM.  
VV: mice bearing 
tumor cells (HT-
29 or A375 or 
MDA-MB-231). 
 
Pharmacokinetics
; tumor volume 

Spherical cage of 14nm, 
stabilizing 33 molecules 
of drug.  
pH-dependent drug 
release. 
 
 
 
To solve: structural 
conformation 

VT: cellular 
internalization 
and 
accumulation 
into lysosomes.  
 
VV: Increased 
plasma half-
life. 
Preferential 
accumulation 
in tumor tissue 
respect to 
healthy one. 
Tumor growth 
inhibition. 
(APO Vs free 
drug or Doxil) 

[52
] 

Doxorubicin 
Atropine 
Carbachol 

Disassembly 
in urea buffer 
followed by 
reassembly at 
physiological 
pH 

 Not reported TEM, DLS, 
UV-VIS, 
HPLC-UV 

 

VT: pancreatic 
cancer cells 
(PANC-1). 
LCSM. 
VV: WT and mice 
bearing PANC-1. 
 
Pharmacokinetics
; tumor volume  

Spherical cage of 11nm, 
stabilizing 33 (DOXO), 
47 (Atropine) or 58 
(Carbacol) molecules of 
drug.  
pH-dependent drug 
release. 
 
To solve: structural 
conformation 

VT : Rapid 
accumulation 
into tumoral 
cell through 
interaction with 
TfR1 receptors.  
 
VV: long term 
circulation. 
Accumulation 

[53
] 



into tumor site. 
Reduction of 
tumor volume 
and increased 
survival rate. 
(loaded APO 
Vs free drug) 

Daunomyci
n 

Pre-
complexation 
with PLLA. 
Disassembly 
at pH 5 
followed by 
reassembly at 
physiological 
pH 

 Not reported Fluorescence 
spectroscopy 

 Increased drug 
stabilization (4 times 
higher) respect to non 
complexed drug. 
 
To solve: chemical and 
structural 
characterization.  
 

 [24
] 

Daunomyci
n 

Pre-
complexation 
with PLLA. 
Disassembly 
at pH 5 
followed by 
reassembly at 
physiological 
pH 

HA Not reported TEM, UV-VIS- 
UV, FTIR, 
Fluorescence 
spectroscopy  

VT: Human lung 
carcinoma cell 
line (A549) and 
human lung 
fibroblast (MRC-
5).  
 
MTT, LCSM 

Spherical cage of 28 nm. 
pH dependent drug 
release. 
 
 
To solve: localization of 
the drug 

VT: Rapid 
accumulation 
into cancer cell 
expressing 
CD44 and 
cytotoxicity 
(APO Vs free 
drug). 
 
 

[56
] 

Cisplatin 
Carboplatin 
Oxaliplatin 

Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH 

 Not reported DLS, UV-VIS, 
CD, ICP-MS  

VT: rat 
pheochrocytoma 
cell line (PC12).  
 
 
 

Spherical cage of 13 nm 
encapsulating 45 
(cisplatin), 17 
(carboplatin), 23 
(oxaliplatin) molecule of 
drug.  

VT: Increased 
uptake and 
cytotoxicity of 
actives after 
loading 
(respect to free 

[35
] 



MTT, ICP-MS 
 

 
To solve: localization of 
the drug 

drug). 
 
 

Cisplatin 
Carboplatin 

Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH/Passive 
loading by pre 
incubation 
with Pt 

 Not reported TEM, UV-VIS, 
NMR, ICP-
AES, gel 
electrophoreses 

 

VT: rat 
pheochrocytoma 
cell line (PC12).  
 
 
MTT 

Cage encapsulating 15 of 
drug 
 

To solve: localization of 
the drug, structural 
characterization 

VT: Decreased 
viability of 
cancer cells 
(loaded Vs 
unloaded APO) 

 
 

[46
] 

Cisplatin Disassembly 
at pH 13 
followed by 
reassembly at 
physiological 
pH  

 Pig pancreas TEM, UV-VIS 
CD, ICP-MS.  

 
 

VT: gastric cancer 
cells (BGC823) 
and Hela. 
 
 
FACS, MALDI-
TOF/TOF, RT-
PCR. 
 

Spherical cage 
encapsulating 12 
Molecules of drug. 
 
 
To solve: localization of 
the drug 

VT: Induction 
of apoptosis.  
 
 

[47
] 

Cisplatin Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH 

Antibod
y direct 
to 
CSPG4 

Recombinan
t  
(H-bacterial) 

DLS, AUC, 
SEC 

VT: melanoma 
cell line 
(CSPG4+) and 
breast cancer cells 
(CSPG4-).  
Proliferation test 
 
VV: CD1 nude 
mice bearing 
tumor.  
 

Protein cage of 33 nm 
with a drug/protein 
molar ratio of 50 
 
 
 
 
 
 
To solve: localization of 
the drug, structural 

VT: increased 
antiproliferativ
e effect 
(modified Vs 
not modified 
APO). 
 
VV: reduction 
of tumor size in 
mice bearing 
melanoma. 

[57
] 



 
Evaluation of 
tumor size 

characterization and 
quantification of ligand 

siRNA 
(fluorescent 
model 
sequence) 

Incubation of 
modified 
APO with 
siRNA 

CAP and 
CTP  

Recombinan
t 
(H-Human) 

DLS, TEM, 
polyacrylamide 
gel 

VT: human breast 
cancer cells 
(MDA-MB-468) 
and vimentin 
expressing murine 
melanoma 
(B16F10). 
 
CLSM 

Complex of 53 nm 
stabilizing siRNA 
 
 
To solve: structural 
characterization 

VT: Rapid 
accumulation 
into cytoplasm 
of tumor cells  

[58
] 

 

Table 1: APO utilization in drug delivery to cancer 

 

LEGEND: AUC: analytical ultracentrifugation; CAP: Cationic peptides; CD: circular dichroism; CSPG4: Chondroitin sulfate proteoglycan 4; CTP: 
cell penetrating peptide; DLS: dynamic light scattering; FACS: fluorescence activated cells sorting; HA: Hyaluronic acid; HER2: Epidermal grown 
factor receptor 2; HPLC-UV: High-performance liquid chromatography- UV; ICP-EAS: Inductively coupled plasma atomic emission spectroscopy; 
ICP-MS: inductively coupled plasma mass spectrometer; LSCM: Laser-scanning Confocal Microscopy; MALDI TOF/TOF: Matrix-assisted laser 
desorption/ionization; MTT: 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio; NMR: Nuclear magnetic resonance; PLLA: poly-L-aspartic acid; RGD: 
peptide with affinity for integrin receptor upregulated on tumor endothelial cells; RT-PCR: Reverse transcriptase-polymerase chain reaction; SEC: 
size exclusion chromatography; TEM: transmission electron microscopy; TfR1: transferrin receptor; UV-FTIR: Fourier transform infrared 
spectroscopy; UV-VIS: Ultraviolet–visible spectroscopy; WB: western blot. 

  



Drug 
Method of 

encapsulatio
n 

Surface 
modificatio

n 

Source of 
APO 

Outcomes/Short comings 

1.Chemico-
physical and 
technological 
studies 

2. In vitro (VT)/in 
vivo (VV) model  
 
test adopted 

Structural/technologic
al end point 
 
Focus to solve 

Biological end 
points 

RE
F 

Gadoliniu
m 

Passive 
loading 

 Not 
reported 

IR, TEM, UV-
Vis, ICP, SDS-
PAGE 

 Small cage stabilizing 
GD (III); increase GD 
longitudinal and 
transverse relaxivities 
 
To solve: structural 
characterization; 
localization of the drug. 

 [61] 

GD-
Me2DO2A 

Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH. Drug 
was added 
during the 
basification 
process. 

dextran Not 
reported 

TEM, UV-VIS, 
ICP-EAS 

VV: mice bearing 
HeLa cells.  
 
 
MRI, NIRF 
 
 

Spherical 30 nm 
modified cage 
encapsulating 36 
molecules of contrast 
agent.  
 
To solve: structural 
characterization; 
localization of the drug.

VV: massive 
accumulation in 
tumor site and 
high proton 
relaxivity. 

[60] 

GD-
HPDO3A 

Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH 

NCAM Not 
reported 

 VT:renal cell 
carcinoma cells 
(TEC). 
ICP-MS, MRI 
VV: SCID mice 
bearing TEC cells. 
 
MRI, histology, 

Modified cage 
encapsulating 8-10 
molecules of contrast 
agent whit high 
relaxivity (5 time 
higher respect to free 
molecule) 
 

VT: efficient 
cellular 
internalization 
(loaded/modifie
d APO Vs 
loaded APO) 
VV: 
accumulation 

[62] 



immunofluorescenc
e. 

 
To solve: structural 
characterization; 
localization of the drug.

into tumor site 
(modified/loade
d APO>loaded 
APO) 

GD-
HPDO3A 

Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH 

 Not 
reported 

  Cage encapsulating 10 
molecules of contrast 
agent. Relaxivity 
constant for several 
days. 
 
To solve: structural 
characterization; 
localization of the drug.

 [59] 

64Cu+Cy5 Dissociation 
at pH 2 
followed by 
reconstructio
n at 
physiological 
pH  

RGD4C Not 
reported 

DLS , TEM  VV: tumor bearing 
U87MG glioma. 
 
NIRF, PET, LCSM 
 

 
 
Absence of structural 
analyses and 
quantification of 
exposed ligands 

VV: massive 
tumor 
accumulation 
mediated by 
RGD-integrin 
interaction.  

[78] 

Fe3O4 Mineralizatio
n procedure 

None Recombina
nt (H-
Human) 

DLS, TEM, 
MR  

VT: murine 
macrophage cells.  
 
MR, ICP-MS 

Cage of 12-13 nm 
encapsulating 5000 Fe. 
 
To solve: structural 
characterization. 

VT: uptake of 
Apo into cells 
and 
accumulation 
of 116 ug 
Fe/cell within 
72 h 

[72] 

Fe3O4 Mineralizatio
n procedure 

RGD4G Recombina
nt (H-
Human) 

DLS, TEM, 
magnetic 
measurement 

VT: human 
melanoma cell line 
(C32).  
 
 

Spherical surface 
modified cage of 14 nm 
encapsulating 5000 
molecules of Fe 

VT: specific 
cellular uptake 
mediated by 
interaction with 
integrin. 

[73] 



FACS, TEM 
Fe3O4 Mineralizatio

n procedure 
RGD Recombina

nt  
(H-Human)  

 VT: bovine aortic 
endothelial cells. 
 
Fluorescence 
microscopy  
 
VV:WT mice. 
 
Fluorescence 
microscopy, 
histology 

 VT: Enhanced 
cellular uptake 
(modified vs 
not modified 
APO) 
VV: High 
accumulation in 
carotid arteries 
(modified vs 
not modified 
APO) 

[74] 

Fe3O4 Mineralizatio
n procedure 

EGF (ligand 
for EGFR) 

Recombina
nt  
(H-Human) 

DLS, TEM.  VT: breast 
epithelial cells 
(MCF-10A cells), 
breast cancer cells 
(MCF-7). 
 
FACS, MTT 
 
VV: nude mice 
bearing MDA.MB-
231 tumor cells. 
 
Weight and tumor 
size, fluorescence 
microscopy 

Spherical cage of 19 
nm  
 
 
 
 
 
To solve: structural 
characterization. 

VT: absence of 
toxicity at high 
APO 
concentration. 
Good targeting 
through cancer 
cell respect to 
normal cells 
(interaction 
with EGFR) 
VV: no 
influence in 
body weight 
and tumor size 
(modified/loade
d APO Vs 
saline). 
Accumulation 
into tumor 
tissue. 

[76] 



Mn Incubation 
with MnCl2 

at pH 9 
followed by 
reduction 

None Horse 
spleen 

TEM, UV-VIS, 
size exclusion 
chromatograph
y, NMR  

 Protein shell with a 
mineral core. 
Encapsulation of about 
1090 Mn atoms. 
 
To solve: structural 
characterization and 
localization of the 
contrast agent 

 [63] 

Mn Incubation 
with MnCl2 

at pH 9 
followed by 
reduction  

None Horse 
spleen and 
recombinan
t (H and L 
Human) 

TEM, UV-VIS, 
EDXA 

 Protein shell 
encapsulating mineral 
core 
 
To solve: structural 
characterization. 
 

 [64] 

Mn Incubation 
with MnCl2 

at pH 9 
followed by 
reduction 

None Horse 
spleen 

ICP-MS, 
Bradford 
quantification 

VT: HTC and 
hepatocytes 
 

ICP-MS 

VV: WT and HBV-
Tg mice  
 
Biodistribuition, 
MRI 

Protein structure 
encapsulating 3000 
Mn(II) ions  
 
To solve: structural 
conformation 

VT: high 
accumulation in 
healthy cells 
respect to 
hepatoma 
 
VV: detection 
of tumor lesion 
and improved 
sensitivity 
respect to 
commercial 
probe for MRI 

[65] 

Mn Incubation 
with MnCl2 

at pH 9 

None Not 
reported 

UV-VIS, NMR VT: melanogenic 
cells (B16-F10m) 
and non 

 VT: 
discrimination 
between 

[66] 



followed by 
reduction 

melanogenic cells 
(B16-F10non-m) 

UV-VIS; ICP-MS 
 
VV: mouse 
xenograft model 
bearing B16-F10m 

MR 

melanogenic 
and non 
melanogenic 
cells; high 
cellular uptake 
in melanogenic 
cells. 
 
VV: APO 
accumulation 
into tumor site 

 

Table 2: APO utilization in diagnosis 

LEGEND: EDXA: Energy Dispersive X-ray Analysis; LSCM: Laser-scanning Confocal Microscopy; ICP-MS: Inductively coupled plasma mass 
spectrometry; NMR: nuclear magnetic resonance; MR: magnetic resonance; NCAM: neural cell adhesion molecule; NIRF: near infrared 
fluorescence; PET: positron emission tomography; IR: Infrared spectroscopy; TEM: transmission electron microscopy; UV-VIS: Ultraviolet–visible 
spectroscopy; SDS-PAGE: Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis; ICP-EAS: Inductively coupled plasma atomic 
emission spectroscopy; DLS: : dynamic light scattering; MRI: Magnetic resonance imaging; ICP-MS: inductively coupled plasma mass 
spectrometer; PET: Positron Emission Tomography; MTT: 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio; FACS: fluorescence activated cells 
sorting; RGD: Arginylglycylaspartic acid; EGF: Epidermal growth factor; 

 

 

 

 

  



Drug 
Method of 

encapsulation 
Surface 

modification
Source 
of APO 

Outcomes/Short comings 

1.Chemico-
physical and 
technological 
studies 

2. In vitro 
(VT)/in vivo 
(VV) model  
 
test adopted 

Structural/technological 
end point 
 
Focus to solve 

Biological end 
points 

REF 

Curcumin + 
Gd-
HPDO3A 

Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH.  

 Horse 
spleen 

SEC, UV-
VIS, ICP-MS 

VV: male mice 
(C57BL), mice 
model of liver 
injury. 
 
 
 
 
MR, histology  

Protein cage of 19 nm 
encapsulating 9.5 and 0.4 
molecules of curcumin 
and Gd-HPDO3A 
respectively. Ability to 
protect drug from 
degradation. 
 
To solve: structural 
characterization  

VV: preferential 
uptake by the liver 
(about 19% of 
injected dose).  
Reduction of ALT, 
leucocyte 
infiltration and 
hepatocyte 
apoptosis levels. 
(loaded Vs native 
APO). 

[83] 

AU-NP and 
5-FU 

Syntheses of 
AU-NPs 
inside the 
protein cage 
(AU 
reduction) 
followed by a 
passive 
loading of 5-
FU 

 Not 
reported

TEM, 
EDXA, 
PAGE, , CD, 
UV-VIS, 19F-
NMR. 
 
 

VT: non cancer 
cells (HKC); 
cancer cells 
(HeLa , HepG2, 
Caco-2, human 
hepatic L02). 
 
 
CCK-8, CLSM, 
TEM, ICP-MS, 
FACS, BrdU, 
WB 

Regular protein cage 
encapsulation 45 
molecules of drug. pH 
dependent drug release 
 
 
To solve: localization of 
the drug 

VT: Accumulation 
of APO into 
lysosomes; low 
toxicity in control 
cells; decreasing of 
IC50 value (15 
times Vs free drug) 
and increase of the 
antiproliferative 
effect in cancer 
cells. 

[84] 

Doxorubicin  Disassembly 
at pH 2 

Magnetic 
nanoparticles 

Not 
reported

Fluorimetric 
analysis, CE 

 Partial encapsulation of 
drug into protein cage 

 [54] 



followed by 
reassembly at 
physiological 
pH 

 and pH triggered drug 
release. 
 
To solve: structural 
characterization; 
localization of the drug 

Doxorubicin  Disassembly 
at pH 2 
followed by 
reassembly at 
physiological 
pH 

HWR 
peptide and 
anti PSMA 
antibodies; 
AU-NP 

Horse 
spleen 

DLS, FT-IR, 
PAGE, ICP-
MS 

VT: Human 
umbilical vein 
endothelial cells 
(HUVEC), 
human prostate 
adenocarcinoma 
cells (LNCCaP). 
 
FACS 

Complex protein cage of 
22 nm, pH dependent 
drug release. 

VT: specific 
uptake in tumoral 
cells and time 
dependent 
inhibition of cell 
growth. 
Excellent 
hemocompatibility.

[81]  

Table 3: APO utilization in theranostic applications 

LEGEND: AU-NPs: gold nanoparticles; BrdU: Bromodeoxyuridine; CCK-8:cell counting kit; CD= circular dichroism; CE: Capillary 
electrophoreses; CLSM: confocal laser scanning microscopy; DLS: dynamic light scattering; EDXA: energy dispersive X-ray analysis; FACS: 
fluorescence activated cells sorting; FACS: fluorescence activated cells sorting; FT-IR: Fourier transform infrared spectroscopy; ICP-MS: 
inductively coupled plasma mass spectrometer; MR: magnetic resonance; NMR: nuclear magnetic resonance; PMSA: prostate specific membrane 
antigen; SEC: size exclusion chromatography; TEM: transmission electron microscopy; UV-VIS: Ultraviolet–visible spectroscopy; WB: western 
blot: 5-FU: 5-Fluorouraciil. 

 

 

 

  



Drug 
Method of 

encapsulation 
Surface 

modification
Source of 

APO 

Outcomes/Short comings 

1.Chemico-
physical and 
technological 
studies  

2. In 
vitro/in 
vivo test 

Structural/technological 
end point 

Biological end points REF 

  
 
 

OT-1 and 
OT-2 

Recombinant
(bacterial) 

DLS, TEM, 
MS  

VT: 
splenocyte 
from 
C57BL/6 
mice. 
FACS. 
VV: 
C57BL/6 
mice. 
Cytokine 
assay 

Spherical cage of 13 nm 
exposing antigen in the 
inner or outer surface. 
 
To solve: structural 
characterization 

VT: increased of T cell 
proliferation after APO 
exposure. 
VV: effective 
differentiation of 
activated T cells in 
functional effector T 
cells 

[85] 

 Incubation of 
recombinant 
protein in 
TRIS buffer at 
physiologic 
pH and 
purification 

HA 
 

Recombinant 
(bacterial) 

DLS, TEM, 
SEC. 

VV: 
female 
BALB/c 
mice 

Smooth spherical cage 
exposing antigens 
 
To solve: structural 
characterization 

VV: inhibition of 
hemoagglutination  

[86] 

glucose 
oxidase 

Surface 
attachment 
through 
biotin-
streptavidin 
technology 

 Not reported TEM, UV-
VIS 

 Cage of 16 nm with an 
irregular morphology and 
largely aggregated 
stabilizing 8 molecules of 
enzyme. 
 
To solve: structural 
characterization 

 [50] 



 

Table 4: APO utilization in therapy 

 

LEGEND: DLS: dynamic light scattering; FACS: fluorescence activated cells sorting; HA: Influenza virus hemagglutinin; MS: mass spectrometry; 
OT1/OT”: Antigen peptides derived from ovalbumin; SEC: size exclusion chromatography; TEM: transmission electron microscopy; UV-VIS: 
Ultraviolet–visible spectroscopy;



 
 Category Drug Note Ref 

Anticancer Tyrosine kinase 
inhibitor 

Gefinitinib 10 molecules/APO loading 42 

 Anthracyclin Doxorubicin -pre-complexation with Cu2+ 
increase the drug loading 

43-45 

Anthracyclin Daunorubicin -acidic protocol 

-surface conjugation for 
targeting 

-pre-complexation with 
negatively charged peptides 

22, 56 

Alkylating 
agents 

Cisplatin -strong acidic protocol 

-2 molecules/APO 

46 

Alkylating 
agents 

Carboplatin -strong acidic protocol 

-5 molecules/APO 

46 

Alkylating 
agents 

Cisplatin -alkaline protocol 47 

Alkylating 
agents 

Cisplatin -alkaline protocol 

-surface modification  

34,57 

Antimuscarinic Atropine / 53 

Cholinomimetic Carbachol / 53 

 SiRNA -modification with protamine-
derived peptides for 
complexation  

58 

 

Diagnostic Gadolinium -acidic protocol  

-neutral chelates 

59-62 

 Gadolinium -neutral chelates 

-surface modification for tumor 
targeting 

62 



Gadolinium - acidic dissociation 

-positively charged 
complexation 

60 

Magnetic 
Fe3O4 

-iron core formation 

 

72-73 

Magnetic 
Fe3O4 

-surface engineering for tumor 
targeting 

74-75 

Cu64  

Cy5 

-surface modification for tumor 
targeting 

78 

Mn   -alkaline protocol  

-accumulation in tumor 

63,64,65,66

 

Table 5: Summary of molecules and active agents loaded into APO nanocages. 

 

 

 

 

 

 

 

 




