1,283 research outputs found
On the susceptibility function of piecewise expanding interval maps
We study the susceptibility function Psi(z) associated to the perturbation
f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a
spectral description of transfer operators. It gives in particular sufficient
conditions which guarantee that Psi(z) is holomorphic in a disc of larger than
one. Although Psi(1) is the formal derivative of the SRB measure of f_t with
respect to t, we present examples satisfying our conditions so that the SRB
measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In
v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5.
In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular
in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for
these examples.Comment: To appear Comm. Math. Phy
Note on nonequilibrium stationary states and entropy
In transformations between nonequilibrium stationary states, entropy might be
a not well defined concept. It might be analogous to the ``heat content'' in
transformations in equilibrium which is not well defined either, if they are
not isochoric ({\it i.e.} do involve mechanical work). Hence we conjecture that
un a nonequilbrium stationary state the entropy is just a quantity that can be
transferred or created, like heat in equilibrium, but has no physical meaning
as ``entropy content'' as a property of the system.Comment: 4 page
Phase transitions with four-spin interactions
Using an extended Lee-Yang theorem and GKS correlation inequalities, we
prove, for a class of ferromagnetic multi-spin interactions, that they will
have a phase transition(and spontaneous magnetization) if, and only if, the
external field (and the temperature is low enough). We also show the
absence of phase transitions for some nonferromagnetic interactions. The FKG
inequalities are shown to hold for a larger class of multi-spin interactions
Ambiguity in the Determination of the Free Energy for a Model of the Circle Map
We consider a simple model to describe the widths of the mode locked
intervals for the critical circle map. Using two different partitions of the
rational numbers, based on Farey series and Farey tree levels respectively, we
calculate the free energy analytically at selected points for each partition.
It is found that the result of the calculation depends on the method of
partition. An implication of this is that the generalized dimensions are
different for each partition except when , i.e. only the Hausdorff
dimension is the same in each case.Comment: 14 page
Topics in chaotic dynamics
Various kinematical quantities associated with the statistical properties of
dynamical systems are examined: statistics of the motion, dynamical bases and
Lyapunov exponents. Markov partitons for chaotic systems, without any attempt
at describing ``optimal results''. The Ruelle principle is illustrated via its
relation with the theory of gases. An example of an application predicts the
results of an experiment along the lines of Evans, Cohen, Morriss' work on
viscosity fluctuations. A sequence of mathematically oriented problems
discusses the details of the main abstract ergodic theorems guiding to a proof
of Oseledec's theorem for the Lyapunov exponents and products of random
matricesComment: Plain TeX; compile twice; 30 pages; 140K Keywords: chaos,
nonequilibrium ensembles, Markov partitions, Ruelle principle, Lyapunov
exponents, random matrices, gaussian thermostats, ergodic theory, billiards,
conductivity, gas.
Linear response formula for piecewise expanding unimodal maps
The average R(t) of a smooth function with respect to the SRB measure of a
smooth one-parameter family f_t of piecewise expanding interval maps is not
always Lipschitz. We prove that if f_t is tangent to the topological class of
f_0, then R(t) is differentiable at zero, and the derivative coincides with the
resummation previously proposed by the first named author of the (a priori
divergent) series given by Ruelle's conjecture.Comment: We added Theorem 7.1 which shows that the horizontality condition is
necessary. The paper "Smooth deformations..." containing Thm 2.8 is now
available on the arxiv; see also Corrigendum arXiv:1205.5468 (to appear
Nonlinearity 2012
Structures of Malcev Bialgebras on a simple non-Lie Malcev algebra
Lie bialgebras were introduced by Drinfeld in studying the solutions to the
classical Yang-Baxter equation. The definition of a bialgebra in the sense of
Drinfeld (D-bialgebra), related with any variety of algebras, was given by
Zhelyabin. In this work, we consider Malcev bialgebras. We describe all
structures of a Malcev bialgebra on a simple non-Lie Malcev algebra
Entropy potential and Lyapunov exponents
According to a previous conjecture, spatial and temporal Lyapunov exponents
of chaotic extended systems can be obtained from derivatives of a suitable
function: the entropy potential. The validity and the consequences of this
hypothesis are explored in detail. The numerical investigation of a
continuous-time model provides a further confirmation to the existence of the
entropy potential. Furthermore, it is shown that the knowledge of the entropy
potential allows determining also Lyapunov spectra in general reference frames
where the time-like and space-like axes point along generic directions in the
space-time plane. Finally, the existence of an entropy potential implies that
the integrated density of positive exponents (Kolmogorov-Sinai entropy) is
independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO
Transfer matrix for spanning trees, webs and colored forests
We use the transfer matrix formalism for dimers proposed by Lieb, and
generalize it to address the corresponding problem for arrow configurations (or
trees) associated to dimer configurations through Temperley's correspondence.
On a cylinder, the arrow configurations can be partitioned into sectors
according to the number of non-contractible loops they contain. We show how
Lieb's transfer matrix can be adapted in order to disentangle the various
sectors and to compute the corresponding partition functions. In order to
address the issue of Jordan cells, we introduce a new, extended transfer
matrix, which not only keeps track of the positions of the dimers, but also
propagates colors along the branches of the associated trees. We argue that
this new matrix contains Jordan cells.Comment: 29 pages, 7 figure
Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems
We consider a class of Ising spin systems on a set \Lambda of sites. The
sites are grouped into units with the property that each site belongs to either
one or two units, and the total internal energy of the system is the sum of the
energies of the individual units, which in turn depend only on the number of up
spins in the unit. We show that under suitable conditions on these interactions
none of the |\Lambda| Lee-Yang zeros in the complex z = exp{2\beta h} plane,
where \beta is the inverse temperature and h the uniform magnetic field, touch
the positive real axis, at least for large values of \beta. In some cases one
obtains, in an appropriately taken \beta to infinity limit, a gas of hard
objects on a set \Lambda'; the fugacity for the limiting system is a rescaling
of z and the Lee-Yang zeros of the new partition function also avoid the
positive real axis. For certain forms of the energies of the individual units
the Lee-Yang zeros of both the finite- and zero-temperature systems lie on the
negative real axis for all \beta. One zero-temperature limit of this type, for
example, is a monomer-dimer system; our results thus generalize, to finite
\beta, a well-known result of Heilmann and Lieb that the Lee-Yang zeros of
monomer-dimer systems are real and negative.Comment: Plain TeX. Seventeen pages, five figures from .eps files. Version 2
corrects minor errors in version
- …