6,504 research outputs found

    Bounding Embeddings of VC Classes into Maximum Classes

    Full text link
    One of the earliest conjectures in computational learning theory-the Sample Compression conjecture-asserts that concept classes (equivalently set systems) admit compression schemes of size linear in their VC dimension. To-date this statement is known to be true for maximum classes---those that possess maximum cardinality for their VC dimension. The most promising approach to positively resolving the conjecture is by embedding general VC classes into maximum classes without super-linear increase to their VC dimensions, as such embeddings would extend the known compression schemes to all VC classes. We show that maximum classes can be characterised by a local-connectivity property of the graph obtained by viewing the class as a cubical complex. This geometric characterisation of maximum VC classes is applied to prove a negative embedding result which demonstrates VC-d classes that cannot be embedded in any maximum class of VC dimension lower than 2d. On the other hand, we show that every VC-d class C embeds in a VC-(d+D) maximum class where D is the deficiency of C, i.e., the difference between the cardinalities of a maximum VC-d class and of C. For VC-2 classes in binary n-cubes for 4 <= n <= 6, we give best possible results on embedding into maximum classes. For some special classes of Boolean functions, relationships with maximum classes are investigated. Finally we give a general recursive procedure for embedding VC-d classes into VC-(d+k) maximum classes for smallest k.Comment: 22 pages, 2 figure

    Bifurcation diagram and pattern formation in superconducting wires with electric currents

    Full text link
    We examine the behavior of a one-dimensional superconducting wire exposed to an applied electric current. We use the time-dependent Ginzburg-Landau model to describe the system and retain temperature and applied current as parameters. Through a combination of spectral analysis, asymptotics and canonical numerical computation, we divide this two-dimensional parameter space into a number of regions. In some of them only the normal state or a stationary state or an oscillatory state are stable, while in some of them two states are stable. One of the most interesting features of the analysis is the evident collision of real eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex elements of the spectrum. In particular this provides an explanation to the emergence of a stable oscillatory state. We show that part of the bifurcation diagram and many of the emerging patterns are directly controlled by this spectrum, while other patterns arise due to nonlinear interaction of the leading eigenfunctions
    • …
    corecore