7 research outputs found

    Investigation on the effect of build orientation and heat treatment on tensile strength and fracture mechanism of FDM 3D printed PLA

    Get PDF
    Three-dimensional (3D) printing is one of the many popular types additive manufacturing. Current FDM product has low tensile strength due to the printing orientation that affect to the low bonding layer by layer inside the material. Furthermore, experimental work of FDM using different printing orientation are still limited. The aim of this investigation is to characterize the effect of build orientation and heat treatment on the mechanical performance of PLA samples manufactured using fused deposition modelling (FDM) - 3D printer. Specimens were fabricated according to ASTM-D638 type IV. The next investigation was to analyse the effect of build orientation and heat treatment on the printed specimens. Tensile tests were carried out to determine the mechanical response of the printed specimens. The highest result for ultimate strength and yield strength achieved by heat-treated on-edge orientation, 47.84 MPa and 43.94 MPa respectively while the highest elastic modulus is untreated upright orientation, 8.96 GPa. The results showed that different orientations effect the behaviour of tensile strength and yield strength of the 3D printed PLA. Heat treatment process effected the layer bonding of the specimen as it strengthens the bonding between the layer. In addition, the results have highlighted different fracture behaviour for the upright orientation, on-edge and flat orientations

    Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model

    No full text
    Abstract: This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultra-light design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. Graphical abstract: [Figure not available: see fulltext.]</p
    corecore