10 research outputs found

    Hip, knee, and ankle joint forces in healthy weight, overweight, and obese individuals during walking

    No full text
    Worldwide in 2008, more than 1.4 billion adults, age 20 and older, were overweight. Overweight and obesity are defined as abnormal or excessive fat accumulation that may impair health. The World Health Organization defines overweight as having a body mass index (BMI) greater than or equal to 25 kg/m2 and obese as a BMI greater than or equal to 30 kg/m2. The aim of this study was to compare peak hip, knee, and ankle joint compressive loads during gait at self-selected speed between overweight and healthy weight individuals and to examine the functional relationship between body mass and peak joint forces. Twelve subjects, six high BMI subjects and six normal BMI control subjects, participated in this investigation. Absolute peak hip, knee, and ankle joint forces were 40 %, 43 %, and 48 % greater, respectively, for the high-BMI versus normal group. Joint loads were found to increase approximately linearly with body mass. Body mass accounted for 70-80 % of the variation in the peak compressive load at the hip, knee, and ankle during gait. These findings support the link that increased body mass leads to increased biomechanical loading of the joints and could be a factor linking obesity to osteoarthritis

    The plastic nervous system of Nemertodermatida

    No full text
    Nemertodermatida are microscopic marine worms likely to be the sister-group to acoels, forming with them the earliest extant branch of bilaterian animals, although their phylogenetic position is debated. The nervous system of Flagellophora cf. apelti, Sterreria spp. and Nemertoderma cf. westbladi has been investigated by immunohistochemistry and confocal microscopy using anti-tubulin, anti-5-HT and anti-FMRFamide antibodies. The nervous system of Flagellophora cf. apelti is composed of a large neuropile and a loose brain at the level of the statocysts with several nerve fibres surrounding them and innervating the broom organ. Sterreria spp. shows a commissural-like brain and several neurite bundles going frontad and caudad from this. At the level of the statocysts there is also a thicker aggregation of immunoreactive fibres. The nervous system of N. cf. westbladi consists of a nerve ring lying outside the body wall musculature at the level of the statocyst and a pair of ventro-lateral neurite bundles, from which extend thinner fibres innervating the ventral side of the animal. Numerous bottle-shaped glands were observed, innervated by fibres starting both from the brain and the neurite bundles. The nervous system of the nemertodermatids studied to-date displays no common pattern, instead there is considerable plasticity in the general morphology of the nervous system.  In addition, the musculature of Sterreria spp. has been studied by phalloidin staining. It shows diagonal muscles in the anterior quarter of the body and a simple orthogonal grid in the posterior three quarters, being simpler than that of the other nemertodermatids. High-resolution differential interference contrast microscopy permitted to better visualise some morphological characters of the species studied, such as statocysts, sperm and glands and, in combination with anti-tubulin staining, describe in detail the broom organ in Flagellophora cf. apelti. Finally, we note an apparent absence of innervation of the gut in Nemertodermatida similar to the condition in Xenoturbella

    Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads

    No full text
    Despite the well-recognized role of lifting in back injuries, the relative biomechanical merits of squat versus stoop lifting remain controversial. In vivo kinematics measurements and model studies are combined to estimate trunk muscle forces and internal spinal loads under dynamic squat and stoop lifts with and without load in hands. Measurements were performed on healthy subjects to collect segmental rotations during lifts needed as input data in subsequent model studies. The model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles to take curved paths in flexion and trunk dynamic characteristics (inertia and damping) while subject to measured kinematics and gravity/external loads. A dynamic kinematics-driven approach was employed accounting for the spinal synergy by simultaneous consideration of passive structures and muscle forces under given posture and loads. Results satisfied kinematics and dynamic equilibrium conditions at all levels and directions. Net moments, muscle forces at different levels, passive (muscle or ligamentous) forces and internal compression/shear forces were larger in stoop lifts than in squat ones. These were due to significantly larger thorax, lumbar and pelvis rotations in stoop lifts. For the relatively slow lifting tasks performed in this study with the lowering and lifting phases each lasting ∌2 s, the effect of inertia and damping was not, in general, important. Moreover, posterior shift in the position of the external load in stoop lift reaching the same lever arm with respect to the S1 as that in squat lift did not influence the conclusion of this study on the merits of squat lifts over stoop ones. Results, for the tasks considered, advocate squat lifting over stoop lifting as the technique of choice in reducing net moments, muscle forces and internal spinal loads (i.e., moment, compression and shear force)
    corecore