149 research outputs found

    Oil and gas exploration and development in the Lake Eyre Basin: distribution and consequences for rivers and wetlands, including the Coongie Lakes Ramsar Site

    Get PDF
    Context. Altered flooding regimes and pollution threaten the world’s wetlands, including floodplains of the largely free-flowing rivers. Aims. We investigated the distribution of current and future oil and gas production and exploration on the floodplains of the Lake Eyre Basin. Methods. We compiled these data and their associated infrastructure across the basin floodplains, including the Coongie Lakes Ramsar Site. Key results. There were 831 oil and gas wells across the Lake Eyre Basin, predominantly (98.6%) on Cooper Creek floodplains, with 296 wells in the Coongie Lakes Ramsar Site, with 281 well pads, roads (870 km) and 440 storages. Only eight referrals occurred under the Environment Protection and Biodiversity Conservation Act 1999, despite potential Ramsar wetland impacts. Future oil and gas production licences, primarily unconventional gas production, covered ~2.91 × 106 ha (Cooper Creek), 0.63 × 106 ha (Diamantina) and 1.03 × 106 ha (Georgina) of the floodplains. Conclusions and implications. Oil and gas production and exploration disrupt flooding regimes, with pollution (spills and greenhouse gas emissions). Little rigorous environmental assessment existed to protect the Lake Eyre Basin rivers and Coongie Lakes Ramsar Site, despite state and Commonwealth legislation and policy for protection, which remain largely ineffective in controlling oil and gas development on this free-flowing river

    Incorporating an iterative energy restraint for the Surface Energy Balance System (SEBS)

    Full text link
    © 2017 Elsevier Inc. The Surface Energy Balance System (SEBS) has proven itself as an effective remotely sensed estimator of actual evapotranspiration (ETa). However, it has several vulnerabilities associated with the partitioning of the available energy (AE) at the land surface. We introduce a two stage energy restraint process into the SEBS algorithm (SEBS-ER) to overcome these vulnerabilities. The first offsets the remotely sensed surface temperature to ensure the surface to air temperature difference reflects AE, while the second stage uses a domain based image search process to identify and adjust the proportions of sensible (H) and latent (λE) heat flux with respect to AE. We effectively implemented SEBS-ER over 61 acquisitions over two Landsat tiles (path 90 row 84 and path 91 row 85) in south-eastern Australia that feature heterogeneous land covers. Across the two areas we showed that the SEBS-ER algorithm has: greater resilience to perturbed errors in surface energy balance algorithm inputs; significantly improved accuracy (p < 0.05) at two eddy covariance flux towers in heavily forested (RMSE 62.3 W m− 2, R2 0.879) and sub-alpine grassland (RMSE 33.2 W m− 2, R2 0.939) land covers; and greater temporal stability across 52 daily actual evapotranspiration (ETa) estimates compared to a temporally stable and independent ETa dataset. The energy restraint within SEBS-ER has reduced exposure to the complex errors and uncertainties within remotely sensed, meteorological, and land type SEBS inputs, providing more reliable and accurate spatially distributed ETa products

    A switch in keystone seed-dispersing ant genera between two elevations for a myrmecochorous plant, acacia terminalis

    Full text link
    © 2016 Thomson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The dispersal capacity of plant species that rely on animals to disperse their seeds (biotic dispersal) can alter with changes to the populations of their keystone dispersal vectors. Knowledge on how biotic dispersal systems vary across landscapes allows better understanding of factors driving plant persistence. Myrmecochory, seed dispersal by ants, is a common method of biotic dispersal for many plant species throughout the world. We tested if the seed dispersal system of Acacia terminalis (Fabaceae), a known myrmecochore, differed between two elevations in the Greater Blue Mountains World Heritage Area, in southeastern Australia. We compared ant assemblages, seed removal rates of ants and other vertebrates (bird and mammal) and the dominant seed-dispersing ant genera. At low elevations (c. 200 m a.s.l) seed removal was predominantly by ants, however, at high elevation sites (c. 700 m a.s.l) vertebrate seed dispersers or seed predators were present, removing over 60% of seeds from experimental depots when ants were excluded. We found a switch in the keystone seed-dispersing ant genera from Rhytidoponera at low elevations sites to Aphaenogaster at high elevation sites. This resulted in more seeds being removed faster at low elevation sites compared to high elevation sites, however long-term seed removal rates were equal between elevations. Differences in the keystone seed removalist, and the addition of an alternate dispersal vector or seed predator at high elevations, will result in different dispersal and establishment patterns for A. terminalis at different elevations. These differences in dispersal concur with other global studies that report myrmecochorous dispersal systems alter with elevation

    Using feathers to map continental‐scale movements of waterbirds and wetland importance

    Full text link
    Abstract Waterbirds are highly mobile, moving over large distances to access resources. Although consistent migration routes are observed in highly seasonal and predictable environments, movement patterns to utilize ephemeral resources in dryland environments are largely unknown. This makes conservation planning and water policy challenging as the relative importance of widely dispersed wetlands is difficult to rank. We addressed this challenge by combining a citizen science project with the novel application of X‐ray fluorescence of feathers to detect continental scale movement of waterbirds using elemental signatures. By doing so, we gained important insight into the movements of 24 waterbird species, including the significance of the Murray–Darling basin as a key source of waterbirds across the continent. Our approach highlights the benefits of elemental signatures to identify key areas of habitat use and priorities for wetland management

    Mechanisms for inclusive governance

    Get PDF
    How mechanisms for inclusive governance are understood is built on the framing choices that are made about governance and that which is being governed. This chapter unpacks how governance can be understood and considers different historical and contemporary framings of water governance. A framing of “governance as praxis” is developed as a central element in the chapter. What makes governance inclusive is explored, drawing on theoretical, practical and institutional aspects before elucidating some of the different mechanisms currently used or proposed for creating inclusive water governance (though we argue against praxis based on simple mechanism). Finally, the factors that either constrain or enable inclusive water governance are explored with a focus on systemic concepts of learning and feedback

    Invasive Predators Deplete Genetic Diversity of Island Lizards

    Get PDF
    Invasive species can dramatically impact natural populations, especially those living on islands. Though numerous examples illustrate the ecological impact of invasive predators, no study has examined the genetic consequences for native populations subject to invasion. Here we capitalize on a natural experiment in which a long-term study of the brown anole lizard (Anolis sagrei) was interrupted by rat invasion. An island population that was devastated by rats recovered numerically following rat extermination. However, population genetic analyses at six microsatellite loci suggested a possible loss of genetic diversity due to invasion when compared to an uninvaded island studied over the same time frame. Our results provide partial support for the hypothesis that invasive predators can impact the genetic diversity of resident island populations

    ‘Sub-Prime’ Water, Low-Security Entitlements and Policy Challenges in Over-Allocated River Basins: the Case of the Murray–Darling Basin

    Get PDF
    Environmental policy is often implemented using market instruments. In some cases, including carbon taxing, the links between financial products and the environmental objectives, are transparent. In other cases, including water markets, the links are less transparent. In Australia’s Murray–Darling Basin (MDB), financial water products are known as ‘entitlements’, and are similar to traditional financial products, such as shares. The Australian water market includes ‘Low Security’ entitlements, which are similar to ‘sub-prime’ mortgage bonds because they are unlikely to yield an amount equal to their financial worth. Nearly half the water purchased under the Murray–Darling Basin Plan for environmental purposes is ‘Low Security’. We suggest that the current portfolio of water held by the Australian Government for environmental purposes reflects the mortgage market in the lead-up to the global financial crisis. Banks assumed that the future value of the mortgage market would reflect past trends. Similarly, it is assumed that the future value of water products will reflect past trends, without considering climate change. Historic records of allocations to ‘Low Security’ entitlements in the MDB suggest that, in the context of climate change, the Basin Plan water portfolio may fall short of the target annual average yield of 2075 GL by 511 GL. We recommend adopting finance sector methods including ‘hedging’ ‘Low Security’ entitlements by purchasing an additional 322–2755 GL of ‘Low Security’, or 160–511 GL of ‘High Security’ entitlements. Securing reliable environmental water is a global problem. Finance economics present opportunities for increasing the reliability of environmental flows

    The Changing Epidemiology of Murray Valley Encephalitis in Australia: The 2011 Outbreak and a Review of the Literature

    Get PDF
    Murray Valley encephalitis virus (MVEV) is the most serious of the endemic arboviruses in Australia. It was responsible for six known large outbreaks of encephalitis in south-eastern Australia in the 1900s, with the last comprising 58 cases in 1974. Since then MVEV clinical cases have been largely confined to the western and central parts of northern Australia. In 2011, high-level MVEV activity occurred in south-eastern Australia for the first time since 1974, accompanied by unusually heavy seasonal MVEV activity in northern Australia. This resulted in 17 confirmed cases of MVEV disease across Australia. Record wet season rainfall was recorded in many areas of Australia in the summer and autumn of 2011. This was associated with significant flooding and increased numbers of the mosquito vector and subsequent MVEV activity. This paper documents the outbreak and adds to our knowledge about disease outcomes, epidemiology of disease and the link between the MVEV activity and environmental factors. Clinical and demographic information from the 17 reported cases was obtained. Cases or family members were interviewed about their activities and location during the incubation period. In contrast to outbreaks prior to 2000, the majority of cases were non-Aboriginal adults, and almost half (40%) of the cases acquired MVEV outside their area of residence. All but two cases occurred in areas of known MVEV activity.This outbreak continues to reflect a change in the demographic pattern of human cases of encephalitic MVEV over the last 20 years. In northern Australia, this is associated with the increasing numbers of non-Aboriginal workers and tourists living and travelling in endemic and epidemic areas, and also identifies an association with activities that lead to high mosquito exposure. This outbreak demonstrates that there is an ongoing risk of MVEV encephalitis to the heavily populated areas of south-eastern Australia
    • 

    corecore