39 research outputs found

    Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution

    Get PDF
    Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)(3), As(SH)(2)S(- )and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S(n)(2-), n = 2–6, the bisulfide anion, SH(-), hydrogen sulfide, H(2)S and the sulfanes, S(n)H(2), n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH(- )to H(2)S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S(8 )with SH(- )to produce the polysulfides, S(n)H(-), n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S(6 )species

    Speciation of arsenic in sulfidic waters

    Get PDF
    Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH(2)S from 10(-7.5 )to 10(-3.0 )M, ΣAs from 10(-5.6 )to 10(-4.8 )M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH)(3)(0), and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10(-4.3 )M at neutral pH. Conversion from neutral As(OH)(3)(0 )to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions

    Eruption style at Kīlauea Volcano in Hawaiʻi linked to primary melt composition

    Get PDF
    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths is thought to have little influence on eruptive style. Primary melts formed at ocean island basaltic volcanoes are probably geochemically diverse because they are often associated with melting of a heterogeneous plume source in the mantle. This heterogeneous primary melt composition, and particularly the content of volatile gases, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of K¯ılauea, Hawai’i, over the past 600 years.We find that more explosive styles of eruption at K¯ılauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at K¯ılauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region

    Picritic Glasses from Hawaii

    No full text
    ESTIMATES of the MgO content of primary Hawaiian tholeiitic melts range from 8wt% to as high as 25wt% (refs 1, 2). In general, these estimates are derived from analysis of the whole-rock composition of lavas, coupled with the compositions of the most magnesian olivine phenocrysts observed. But the best estimate of magma composition comes from volcanic glass, as it represents the liquid composition at the time of quenching; minimal changes occur during the quenching process. Here we report the discovery of tholeiitic basalt glasses, recovered offshore of Kilauea volcano, that contain up to 15.0 wt% MgO. To our knowledge, these are the most magnesian glasses, and have the highest eruption temperatures (∼ 1,316°C), yet found. The existence of these picritic (high-MgO) liquids provides constraints on the temperature structure of the upper mantle, magma transport and the material and thermal budgets of the Hawaiian volcanoes. Furthermore, picritic melts are affected little by magma-reservoir processes, and it is therefore relatively straightforward to extrapolate back to the composition of the primary melt and its volatile contents

    Petrogenesis of alkalic and calcalkalic volcanic rocks of Mormon Mountain Volcanic Field, Arizona

    Full text link
    The Cenozoic Mormon Mountain Volcanic Field (MMVF) of northern Arizona is situated in the transition zone between the Basin and Range and the Colorado Plateau. It is composed of alkalic to sub-alkalic basalts and calcalkalic andesites, dacites, and rhyodacites. Despite their spatial and temporal association, the basalts and the calcalkalic suite do not seem to be co-genetic. The petrogenesis of primitive MMVF basalts can be explained as the result of different degrees of partial melting of a relatively homogenous, incompatible element-enriched peridotitic source. The variety of evolved basalt types was the result of subsequent fractional crystallization of olivine, spinel, and clinopyroxene from the range of primitive basalts. Crustal contamination seems to have occurred, but affected only the highly incompatible element abundances. The formation of MMVF calcalkalic rocks is most readily explained by small to moderate amounts of partial melting of an amphibolitic lower crust. This source is LREE-enriched but depleted in Rb and relatively unradiogenic Sr ( 87 Sr/ 86 Sr ∼0.7040). Calcalkalic rhyodacites may also be derived from andesitic parents by fractional crystallization. The overall petrogenesis of the MMVF complex is the result of intra-plate volcanism where mantle-derived magmas intrude and pass through thick continental crust.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47345/1/410_2004_Article_BF00376335.pd
    corecore