10 research outputs found

    Influence of Zn and Mg Alloying on the Corrosion Resistance Properties of Al Coating Applied by Arc Thermal Spray Process in Simulated Weather Solution

    No full text
    In this study, Al–Zn and Al–Mg coatings were deposited on steel substrates by an arc thermal spray process. X-ray diffraction and scanning electr on microscopy were used to characterize the deposited coatings and corrosion products. Open circuit potential (OCP), electrochemical impedance spectroscopy, and potentiodynamic studies were used to assess the corrosion characteristics of these coatings after exposure according to the Society of Automotive Engineers (SAE) J2334 solution of varying durations. This solution simulates an industrial environment and contains chloride and carbonate ions that induce corrosion of the deposited coatings. However, the Al–Mg alloy coating maintained an OCP of approximately - 0.911 V versus Ag/AgCl in the SAE J2334 solution even after 792 h of exposure. This indicates that it protects the steel sacrificially, whereas the Al–Zn coating provides only barrier-type protection through the deposition of corrosion products. The Al–Mg coating acts as a self-healing coating and provides protection by forming Mg 6 Al 2 (OH) 16 CO 3 (Al–Mg layered double hydroxides). Mg 6 Al 2 (OH) 16 CO 3 has interlocking characteristics with a morphology of plate-like nanostructures and an ion-exchange ability that can improve the corrosion resistance properties of the coating. The presence of Zn in the corrosion products of the Al–Zn coating allows dissolution, but, at the same time, Zn 5 (OH) 6 (CO 3 ) 2 and Zn 6 Al 2 (OH) 16 CO 3 are formed and act to reduce the corrosion rate

    An effective and novel pore sealing agent to enhance the corrosion resistance performance of AI coating in artificial ocean water

    Get PDF
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)(3)Al5H6(PO4)(8).18H(2)O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al-3(PO4)(2)(OH)(3)(H2O)(5)) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.This research was supported by basic science research program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (No. 2015R1A5A1037548)
    corecore