234 research outputs found

    An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ

    Get PDF
    Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    Hydrogen Sulfide Attenuated Tumor Necrosis Factor-α-Induced Inflammatory Signaling and Dysfunction in Vascular Endothelial Cells

    Get PDF
    S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction.Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS.S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1

    A case of serendipity*

    Get PDF
    An account is given of how a sensitive bioassay system for measurement of the neurotransmitter acetylcholine serendipitously led to the identification of adenosine triphosphate (ATP) released in vitro from active skeletal muscle. Subsequent application of the identification procedures to exercising human muscle in vivo, cardiac muscle cells in vitro, and human erythrocytes exposed to hypoxia gave rise to the general concept of ATP as a molecule that could influence cell function from the extracellular direction. Mechanisms of ATP release from cells in terms of “trigger” events such as mechanical distortion of the membrane, depolarization of the membrane, and exposure to hypoxia are discussed. Potential therapeutic uses of extracellular ATP in cancer therapy, radiation therapy, and a possible influence upon aging are discussed. Possible roles (distant and local) of extracellular ATP released from muscle during whole body exercise are discussed

    Gene profiling of the erythro- and megakaryoblastic leukaemias induced by the Graffi murine retrovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute erythro- and megakaryoblastic leukaemias are associated with very poor prognoses and the mechanism of blastic transformation is insufficiently elucidated. The murine Graffi leukaemia retrovirus induces erythro- and megakaryoblastic leukaemias when inoculated into NFS mice and represents a good model to study these leukaemias.</p> <p>Methods</p> <p>To expand our understanding of genes specific to these leukaemias, we compared gene expression profiles, measured by microarray and RT-PCR, of all leukaemia types induced by this virus.</p> <p>Results</p> <p>The transcriptome level changes, present between the different leukaemias, led to the identification of specific cancerous signatures. We reported numerous genes that may be potential oncogenes, may have a function related to erythropoiesis or megakaryopoiesis or have a poorly elucidated physiological role. The expression pattern of these genes has been further tested by RT-PCR in different samples, in a Friend erythroleukaemic model and in human leukaemic cell lines.</p> <p>We also screened the megakaryoblastic leukaemias for viral integrations and identified genes targeted by these integrations and potentially implicated in the onset of the disease.</p> <p>Conclusions</p> <p>Taken as a whole, the data obtained from this global gene profiling experiment have provided a detailed characterization of Graffi virus induced erythro- and megakaryoblastic leukaemias with many genes reported specific to the transcriptome of these leukaemias for the first time.</p

    Effects of the Distribution of Female Primates on the Number of Males

    Get PDF
    The spatiotemporal distribution of females is thought to drive variation in mating systems, and hence plays a central role in understanding animal behavior, ecology and evolution. Previous research has focused on investigating the links between female spatiotemporal distribution and the number of males in haplorhine primates. However, important questions remain concerning the importance of spatial cohesion, the generality of the pattern across haplorhine and strepsirrhine primates, and the consistency of previous findings given phylogenetic uncertainty. To address these issues, we examined how the spatiotemporal distribution of females influences the number of males in primate groups using an expanded comparative dataset and recent advances in Bayesian phylogenetic and statistical methods. Specifically, we investigated the effect of female distributional factors (female number, spatial cohesion, estrous synchrony, breeding season duration and breeding seasonality) on the number of males in primate groups. Using Bayesian approaches to control for uncertainty in phylogeny and the model of trait evolution, we found that the number of females exerted a strong influence on the number of males in primate groups. In a multiple regression model that controlled for female number, we found support for temporal effects, particularly involving female estrous synchrony: the number of males increases when females are more synchronously receptive. Similarly, the number of males increases in species with shorter birth seasons, suggesting that greater breeding seasonality makes defense of females more difficult for male primates. When comparing primate suborders, we found only weak evidence for differences in traits between haplorhines and strepsirrhines, and including suborder in the statistical models did not affect our conclusions or give compelling evidence for different effects in haplorhines and strepsirrhines. Collectively, these results demonstrate that male monopolization is driven primarily by the number of females in groups, and secondarily by synchrony of female reproduction within groups
    corecore