38 research outputs found

    Germ Line Origin and Somatic Mutations Determine the Target Tissues in Systemic AL-Amyloidosis

    Get PDF
    BACKGROUND: Amyloid is insoluble aggregated proteins deposited in the extra cellular space. About 25 different proteins are known to form amyloid in vivo and are associated with severe diseases such as Alzheimer's disease, prion diseases and type-2 diabetes. Light chain (AL) -amyloidosis is unique among amyloid diseases in that the fibril protein, a monoclonal immunoglobulin light chain, varies between individuals and that no two AL-proteins with identical primary structures have been described to date. The variability in tissue distribution of amyloid deposits is considerably larger in systemic AL-amyloidosis than in any other form of amyloidosis. The reason for this variation is believed to be based on the differences in properties of the amyloidogenic immunoglobulin light chain. However, there is presently no known relationship between the structure of an AL-protein and tissue distribution. METHODOLOGY/PRINCIPAL FINDINGS: We compared the pattern of amyloid deposition in four individuals with amyloid protein derived from variable light chain gene O18-O8, the source of a high proportion of amyloidogenic light chains, and in whom all or most of the fibril protein had been determined by amino acid sequencing. In spite of great similarities between the structures of the proteins, there was a pronounced variability in deposition pattern. We also compared the tissue distribution in these four individuals with that of four other patients with AL-amyloid derived from the L2-L16 gene. Although the interindividual variations were pronounced, liver and kidney involvement was much more evident in the latter four. CONCLUSIONS/SIGNIFICANCE: We conclude that although the use of a specific gene influences the tissue distribution of amyloid, each light chain exhibits one or more determinants of organ-specificity, which originate from somatic mutations and post-translational modifications. Eventual identification of such determinants could lead to improved treatment of patients with AL amyloidosis

    Protocol for a randomised controlled feasibility trial of exercise rehabilitation for people with postural tachycardia syndrome: the PULSE study

    Get PDF
    Background: Postural orthostatic tachycardia syndrome (POTS) is an autonomic nervous system disorder causing an abnormal cardiovascular response to upright posture. It affects around 0.2% of the population, most commonly women aged 13 to 50 years. POTS can be debilitating; prolonged episodes of pre-syncope and fatigue can severely affect activities of daily living and health-related quality of life (HRQoL). Medical treatment is limited and not supported by randomised controlled trial (RCT) evidence. Lifestyle interventions are first-line treatment, including increased fluid and salt intake, compression tights and isometric counter-pressure manoeuvres to prevent fainting. Observational studies and small RCTs suggest exercise training may improve symptoms and HRQoL in POTS, but evidence quality is low. Methods: Sixty-two people (aged 18–40 years) with a confirmed diagnosis of POTS will be invited to enrol on a feasibility RCT with embedded qualitative study. The primary outcome will be feasibility; process-related measures will include the number of people eligible, recruited, randomised and withdrawn, along with indicators of exercise programme adherence and acceptability. Secondary physiological, clinical and health-related outcomes including sub-maximal recumbent bike exercise test, active stand test and HRQoL will be measured at 4 and 7 months post-randomisation by researchers blinded to treatment allocation. The PostUraL tachycardia Syndrome Exercise (PULSE) intervention consists of (1) individual assessment; (2) 12-week, once to twice-weekly, supervised out-patient exercise training; (3) behavioural and motivational support; and (4) guided lifestyle physical activity. The control intervention will be best-practice usual care with a single 30-min, one-to-one practitioner appointment, and general advice on safe and effective physical activity. For the embedded qualitative study, participants (n = 10 intervention, n = 10 control) will be interviewed at baseline and 4 months post-randomisation to assess acceptability and the feasibility of progressing to a definitive trial. Discussion: There is very little high-quality research investigating exercise rehabilitation for people with POTS. The PULSE study will be the first randomised trial to assess the feasibility of conducting a definitive multicentre RCT testing supervised exercise rehabilitation with behavioural and motivational support, compared to best-practice usual care, for people with POTS. Trial registration: ISRCTN45323485 registered on 7 April 2020

    136Ba studied via deep-inelastic collisions: Identification of the (νh11/2)10+-2 isomer

    No full text
    A multinucleon transfer reaction between a thin self-supporting 78198Pt target and an 850 MeV 54136X6 beam has been used to populate and study the structure of the N=80 isotone 56136Ba. Making use of time-correlated γ-ray spectroscopy, evidence for an Iπ=(10+) isomeric state has been found with a measured half-life of 91±2 ns. Prompt-delayed correlations have also enabled the tentative measurement of the near-yrast states which lie above the isomer. Shell-model calculations suggest that the isomer has a structure which can be assigned predominantly as (vh 11/2)10+-2. The results are discussed in terms of standard and pair-truncated shell-model calculations, and compared to the even-Z N=80 isotones ranging from 50130Sn to 68148Er. A qualitative explanation of the observed dramatic decrease in the B(E2:10+→8+) value for the N=80 isotones at 136Ba is given in terms of the increasing single-hole energy of the h11/2 neutron configuration as the proton subshell is filled. The angular momentum transfer to the binary fragments in the reaction has also been investigated in terms of the average total γ-ray fold versus the scattering angle of the recoils
    corecore