2,129 research outputs found

    The First H I-Discovered Galaxy in the Bootes Void

    Get PDF
    In this paper we present a detailed study of the first H I-discovered galaxy in the Bootes void, at a distance of 145.5 Mpc. We have observed this galaxy both at low and high resolution in the 21 cm line and optically. The galaxy has an irregular, slowly rotating H i disk. The gas is much more extended than the optical disk, extending out as far as 6.4 times R25. The rotation curve of the galaxy is flat: amplitude and shape can be explained by the presence of a dark halo with a mass of 1.6 times the luminous mass

    Galaxy Disks

    Full text link
    The formation and evolution of galactic disks is particularly important for understanding how galaxies form and evolve, and the cause of the variety in which they appear to us. Ongoing large surveys, made possible by new instrumentation at wavelengths from the ultraviolet (GALEX), via optical (HST and large groundbased telescopes) and infrared (Spitzer) to the radio are providing much new information about disk galaxies over a wide range of redshift. Although progress has been made, the dynamics and structure of stellar disks, including their truncations, are still not well understood. We do now have plausible estimates of disk mass-to-light ratios, and estimates of Toomre's QQ parameter show that they are just locally stable. Disks are mostly very flat and sometimes very thin, and have a range in surface brightness from canonical disks with a central surface brightness of about 21.5 BB-mag arcsec2^{-2} down to very low surface brightnesses. It appears that galaxy disks are not maximal, except possibly in the largest systems. Their HI layers display warps whenever HI can be detected beyond the stellar disk, with low-level star formation going on out to large radii. Stellar disks display abundance gradients which flatten at larger radii and sometimes even reverse. The existence of a well-defined baryonic Tully-Fisher relation hints at an approximately uniform baryonic to dark matter ratio. Thick disks are common in disk galaxies and their existence appears unrelated to the presence of a bulge component; they are old, but their formation is not yet understood. Disk formation was already advanced at redshifts of 2\sim 2, but at that epoch disks were not yet quiescent and in full rotational equilibrium. Downsizing is now well-established. The formation and history of star formation in S0s is still not fully understood.Comment: This review has been submitted for Annual Reviews of Astronomy & Astrophysics, vol. 49 (2011); the final printed version will have fewer figures and a somewhat shortened text. A pdf-version of this preprint with high-resolution figures is available from http://www.astro.rug.nl/~vdkruit/jea3/homepage/disks-ph.pdf. (table of contents added; 71 pages, 24 figures, 529 references

    Herschel/SPIRE observations of the dusty disk of NGC 4244

    Get PDF
    We present Herschel/SPIRE images at 250, 350, and 500 mu m of NGC 4244, a typical low-mass, disk-only and edge-on spiral galaxy. The dust disk is clumpy and shows signs of truncation at the break radius of the stellar disk. This disk coincides with the densest part of the Hi disk. We compare the spectral energy distribution (SED), including the new SPIRE fluxes, to 3D radiative transfer models; a smooth model disk and a clumpy model with embedded heating. Each model requires a very high value for the dust scale-length (h(d) = 2-5 h(*)), higher dust masses than previous models of NGC 4244 (M-d = 0.47-1.39 x 10(7) M-circle dot) and a face-on optical depth of tau(f.o.)(V) = 0.4-1.12, in agreement with previous disk opacity studies. The vertical scales of stars and dust are similar. The clumpy model much better mimics the general morphology in the sub-mm images and the general SED. The inferred gas-to-dust mass ratio is compatible with those of similar low-mass disks. The relatively large radial scale-length of the dust disk points to radial mixing of the dusty ISM within the stellar disk. The large vertical dust scale and the clumpy dust distribution of our SED model are both consistent with a scenario in which the vertical structure of the ISM is dictated by the balance of turbulence and self-gravity

    The De Jong Gierveld short scales for emotional and social loneliness: tested on data from 7 countries in the UN generations and gender surveys

    Get PDF
    Loneliness concerns the subjective evaluation of the situation individuals are involved in, characterized either by a number of relationships with friends and colleagues which is smaller than is considered desirable (social loneliness), as well as situations where the intimacy in confidant relationships one wishes for has not been realized (emotional loneliness). To identify people who are lonely direct questions are not sufficient; loneliness scales are preferred. In this article, the quality of the three-item scale for emotional loneliness and the three-item scale for social loneliness has been investigated for use in the following countries participating in the United Nations “Generations and Gender Surveys”: France, Germany, the Netherlands, Russia, Bulgaria, Georgia, and Japan. Sample sizes for the 7 countries varied between 8,158 and 12,828. Translations of the De Jong Gierveld loneliness scale have been tested using reliability and validity tests including a confirmatory factor analysis to test the two-dimensional structure of loneliness. Test outcomes indicated for each of the countries under investigation reliable and valid scales for emotional and social loneliness, respectively

    Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses

    Get PDF
    Humans are infected with paramyxoviruses of different genera early in life, which induce cytotoxic T cells that may recognize conserved epitopes. This raises the question of whether cross-reactive T cells induced by antecedent paramyxovirus infections provide partial protection against highly lethal zoonotic Nipah virus infections. By characterizing a measles virus-specific but paramyxovirus cross-reactive human T cell clone, we discovered a highly conserved HLA-B*1501- restricted T cell epitope in the fusion protein. Using peptides, tetramers, and single cell sorting, we isolated a parainfluenza virus-specific T cell clone from a healthy adult and showed that both clones cleared Nipah virus-infected cells. We identified multiple conserved hot spots in paramyxovirus proteomes that contain other potentially cross-reactive epitopes. Our data suggest that, depending on HLA haplotype and history of paramyxovirus exposures, humans may have cross-reactive T cells that provide protection against Nipah virus. The effect of preferential boosting of these cross-reactive epitopes needs to be further studied in light of paramyxovirus vaccination studies

    Assembly and alignment of the 4-metre multi-object spectroscopic telescope wide field corrector

    Get PDF
    The 4-metre multi-object spectroscopic telescope (4MOST) is a fiber-fed multi-object spectrograph for the VISTA telescope at the European Southern Observatory (ESO) Paranal Observatory in Chile. The goal of the 4MOST project is to create a general purpose and highly efficient spectroscopic survey facility for astronomers in the 4MOST consortium and the ESO community. The instrument itself will record 2436 simultaneous spectra over a 1/44.2 square deg field of view and consists of an optical wide-field corrector (WFC), a fiber positioner system based on a tilting spine design, and three spectrographs giving both high and low spectral dispersion. The WFC comprises of six lenses grouped into four elements, two of which are cemented doublets that act as an atmospheric dispersion corrector. The first lens element is 0.9 m in diameter while the diameter of the other elements is 0.65 m. For the instrument to meet its science goals, each lens was aligned to be well within 1/4100 μm - a major challenge. This was achieved using contact metrology methods supplemented by pencil beam laser probes. In particular, an off-axis laser beam system has been implemented to test the optics' alignment before and after shipment. This work details the alignment and assembly methods and presents the latest results on the achieved lens positioning and projected performance of the WFC

    Backward bifurcation, equilibrium and stability phenomena in a three-stage extended BRSV epidemic model

    Get PDF
    In this paper we consider the phenomenon of backward bifurcation in epidemic modelling illustrated by an extended model for Bovine Respiratory Syncytial Virus (BRSV) amongst cattle. In its simplest form, backward bifurcation in epidemic models usually implies the existence of two subcritical endemic equilibria for R 0 < 1, where R 0 is the basic reproductive number, and a unique supercritical endemic equilibrium for R 0 > 1. In our three-stage extended model we find that more complex bifurcation diagrams are possible. The paper starts with a review of some of the previous work on backward bifurcation then describes our three-stage model. We give equilibrium and stability results, and also provide some biological motivation for the model being studied. It is shown that backward bifurcation can occur in the three-stage model for small b, where b is the common per capita birth and death rate. We are able to classify the possible bifurcation diagrams. Some realistic numerical examples are discussed at the end of the paper, both for b small and for larger values of b
    corecore