6,776 research outputs found

    Impact of money on emotional expression

    Get PDF
    Activating the concept of money can influence people's own expressions of emotion as well as their reactions to the emotional expressions of others. Thinking about money increases individuals' disposition to perceive themselves in a business-like relationship with others in which transactions are based on objective criteria and the expression of emotion is considered inappropriate. Therefore, these individuals express less emotion in public and expect others to do likewise. Six experiments show that subtle reminders of money lead people to have more negative attitudes toward expressing emotions in public and to avoid expressing emotion in their written communications. In addition, money-primed participants judge others' emotions to be more extreme and are disposed to avoid interacting with persons who display these emotions, especially when participants believe that these emotions are expressed in public.postprin

    Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1β/nerve growth factor signaling

    Get PDF
    Introduction: Interleukin-1β (IL-1β) and nerve growth factor (NGF) are key regulators in the pathogenesis of inflammatory arthritis; specifically, IL-1β is involved in tissue degeneration and NGF is involved in joint pain. However, the cellular and molecular interactions between IL-1β and NGF in articular cartilage are not known. Cartilage stem/progenitor cells (CSPCs) have recently been identified in osteoarthritic (OA) cartilage on the basis of their migratory properties. Here we hypothesize that IL-1β/NGF signaling is involved in OA cartilage degeneration by targeting CSPCs. Method: NGF and NGF receptor (NGFR: TrkA and p75NTR) expression in healthy and OA human articular cartilage and isolated chondrocytes was determined by immunostaining, qRT-PCR, flow cytometry and western blot. Articular cartilage derived stem/progenitor cells were collected and identified by stem/progenitor cell characteristics. 3D-cultured CSPC pellets and cartilage explants were treated with NGF and NGF neutralizing antibody, and extracellular matrix changes were examined by sulfated glycosaminoglycan (GAG) release and MMP expression and activity. Results: Expression of NGF, TrkA and p75NTR was found to be elevated in human OA cartilage. Cellular changes upon IL-1β and/or NGF treatment were then examined. NGF mRNA and NGFR proteins levels were upregulated in cultured chondrocytes exposed to IL-1β. NGF was chemotactic for cells isolated from OA cartilage. Cells isolated on the basis of their chemotactic migration towards NGF demonstrated stem/progenitor cell characteristics, including colony-forming ability, multi-lineage differentiation potential, and stem cell surface markers. The effects of NGF perturbation in cartilage explants and 3D-cultured CSPCs were next analyzed. NGF treatment resulted in extracellular matrix catabolism indicated by increased sGAG release and MMP expression and activity; conversely, treatment with NGF neutralizing antibody inhibited increased MMP levels, and enhanced tissue inhibitor of matrix metalloprotease-1 (TIMP1) expression in OA cartilage explants. NGF blockade with neutralizing antibody also affected cartilage matrix remodeling in 3D-CSPC pellet cultures. Conclusion: Our results strongly suggest that NGF signaling is a contributing factor in articular cartilage degeneration in OA, which likely targets a specific subpopulation of progenitor cells, the CSPCs, affecting their migratory and matrix remodeling activities. These findings provide novel cellular/signaling therapeutic targets in osteoarthritic cartilage

    Parametric and Model Uncertainties Induced by Reduced Order Chemical Mechanisms for Biogas Combustion

    Get PDF
    This study investigates the impact of chemical kinetic uncertainties on biogas combustion using a Uncertainty Quantification (UQ)-based methodology. The results indicate that the variation of physicochemical properties introduced by composition variability introduces smaller uncertainties in the resulting flame properties than the Arrhenius parameters involved in the kinetics used to describe the oxidation process. We demonstrate that the use of reduced mechanisms for methane-air oxidation could be a starting point to develop optimized schemes for biogas combustion. In that regard, we adopted an embedded discrepancy approach to understanding the limits of the use of a reduced mechanism for methane/air in this renewable fuel. This strategy provides a way to reduce systematically the cost of reaction kinetics in simulations, while quantifying the accuracy of predictions of important target quantities. Finally, we develop a surrogate model for biogas flame propagation using machine learning techniques to make feasible a broader UQ analysis.The research leading to these results had received funding from the European Union’s Horizon2020 Programme (2014-2020) and from Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the HPC4E Project (www.hpc4e.eu), grant agreement number 689772Peer ReviewedPostprint (author's final draft

    Clinical Processes - The Killer Application for Constraint-Based Process Interactions?

    Get PDF
    For more than a decade, the interest in aligning information systems in a process-oriented way has been increasing. To enable operational support for business processes, the latter are usually specified in an imperative way. The resulting process models, however, tend to be too rigid to meet the flexibility demands of the actors involved. Declarative process modeling languages, in turn, provide a promising alternative in scenarios in which a high level of flexibility is demanded. In the scientific literature, declarative languages have been used for modeling rather simple processes or synthetic examples. However, to the best of our knowledge, they have not been used to model complex, real-world scenarios that comprise constraints going beyond control-flow. In this paper, we propose the use of a declarative language for modeling a sophisticated healthcare process scenario from the real world. The scenario is subject to complex temporal constraints and entails the need for coordinating the constraint-based interactions among the processes related to a patient treatment process. As demonstrated in this work, the selected real process scenario can be suitably modeled through a declarative approach.Ministerio de EconomĂ­a y Competitividad TIN2016-76956-C3-2-RMinisterio de EconomĂ­a y Competitividad TIN2015-71938-RED

    Using electric current to surpass the microstructure breakup limit

    Get PDF
    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones

    Primary progressive aphasia: six questions in search of an answer

    Get PDF
    Here, we review recent progress in the diagnosis and management of primary progressive aphasia—the language-led dementias. We pose six key unanswered questions that challenge current assumptions and highlight the unresolved difficulties that surround these diseases. How many syndromes of primary progressive aphasia are there—and is syndromic diagnosis even useful? Are these truly ‘language-led’ dementias? How can we diagnose (and track) primary progressive aphasia better? Can brain pathology be predicted in these diseases? What is their core pathophysiology? In addition, how can primary progressive aphasia best be treated? We propose that pathophysiological mechanisms linking proteinopathies to phenotypes may help resolve the clinical complexity of primary progressive aphasia, and may suggest novel diagnostic tools and markers and guide the deployment of effective therapies

    Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun

    Get PDF
    Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars ~ 10 times more massive than the Sun (~10 M_sun), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10 M_sun exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass (> 8 M_sun) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude from the data that the gas is falling inwards towards a very young star of ~20 M_sun, in line with theoretical predictions of non-spherical accretion.Comment: 11 pages, 2 figure

    Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC.Supported by grants R21/R33CA114304 and U01CA111294. G.A.C. is supported as a Fellow at The University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar and by the CLL Global Research Foundation. Work in Dr. Calin’s laboratory is supported in part by a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant, the Laura and John Arnold Foundation, the RGK Foundation and the Estate of C. G. Johnson, Jr. A.C.P.A.P. was supported by NIH fellowship 5F31CA142238

    Room temperature texturing of austenite/ferrite steel by electropulsing

    Get PDF
    The work reports an experimental observation on crystal rotation in a duplex (austenite + ferrite) steel induced by the electropulsing treatment at ambient temperature, while the temperature rising due to ohmic heating in the treatment was negligible. The results demonstrate that electric current pulses are able to dissolve the initial material’s texture that has been formed in prior thermomechanical processing and to produce an alternative texture. The results were explained in terms of the instability of an interface under perturbation during pulsed electromigation

    Radiative Electroweak Symmetry Breaking in a Little Higgs Model

    Full text link
    We present a new Little Higgs model, motivated by the deconstruction of a five-dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0×SO(5)1SO(5)_0\times SO(5)_1, breaking to SO(5)SO(5), with a gauged subgroup of [SU(2)0L×U(1)0R]×O(4)1[SU(2)_{0L}\times U(1)_{0R}]\times O(4)_1, breaking to SU(2)L×U(1)YSU(2)_L \times U(1)_Y. Radiative corrections produce an additional small vacuum misalignment, breaking the electroweak symmetry down to U(1)EMU(1)_{EM}. Novel features of this model are: the only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model contains a custodial symmetry, which ensures that T^=0\hat{T}=0 at tree-level; and the potential for the Higgs boson is generated entirely through one-loop radiative corrections. A small negative mass-squared in the Higgs potential is obtained by a cancellation between the contribution of two heavy partners of the top quark, which is readily achieved over much of the parameter space. We can then obtain both a vacuum expectation value of v=246v=246 GeV and a light Higgs boson mass, which is strongly correlated with the masses of the two heavy top quark partners. For a scale of the global symmetry breaking of f=1f=1 TeV and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV ≲MH≲150\lesssim M_H\lesssim150 GeV over much of the range of parameter space. For ff raised to 10 TeV, these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the predicted values of the Higgs boson mass, but the model still favors MH≲200M_H\lesssim 200 GeV.Comment: 32 pages, 10 figures, JHEP style. Version accepted for publication in JHEP. Includes additional discussion of sensitivity to UV effects and fine-tuning, revised Fig. 9, added appendix and additional references
    • …
    corecore