7 research outputs found

    Comparison of the structure and activity of glycosylated and asglycosylated human carboxylesterase 1

    Get PDF
    Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme

    Altered Traveling Wave Propagation and Reduced Endocochlear Potential Associated with Cochlear Dysplasia in the BETA2/NeuroD1 Null Mouse

    No full text
    The BETA2/NeuroD1 null mouse has cochlear dysplasia. Its cochlear duct is shorter than normal, there is a lack of spiral ganglion neurons, and there is hair cell disorganization. We measured vertical movements of the tectorial membrane at acoustic frequencies in excised cochleae in response to mechanical stimulation of the stapes using laser doppler vibrometry. While tuning curve sharpness was similar between wild-type, heterozygotes, and null mice in the base, null mutants had broader tuning in the apex. At both the base and the apex, null mice had less phase lag accumulation with increasing stimulus frequency than wild-type or heterozygote mice. In vivo studies demonstrated that the null mouse lacked distortion product otoacoustic emissions, and the cochlear microphonic and endocochlear potential were found to be severely reduced. Electrically evoked otoacoustic emissions could be elicited, although the amplitudes were lower than those of wild-type mice. Cochlear cross-sections revealed an incomplete partition malformation, with fenestrations within the modiolus that connected the cochlear turns. Outer hair cells from null mice demonstrated the normal pattern of prestin expression within their lateral walls and normal FM 1-43 dye entry. Overall, these data demonstrate that while tonotopicity can exist with cochlear dysplasia, traveling wave propagation is abnormally fast. Additionally, the presence of electrically evoked otoacoustic emissions suggests that outer hair cell reverse transduction is present, although the acoustic response is shaped by the alterations in cochlear mechanics

    What makes industry–university collaboration succeed? A systematic review of the literature

    No full text

    Modeling

    No full text

    Rare and Emergent Drug-Induced and Iatrogenic Respiratory Conditions: A Guide to Their Recognition and Management

    No full text
    corecore