46 research outputs found

    Network-based social capital and capacity-building programs: an example from Ethiopia

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Capacity-building programs are vital for healthcare workforce development in low- and middle-income countries. In addition to increasing human capital, participation in such programs may lead to new professional networks and access to social capital. Although network development and social capital generation were not explicit program goals, we took advantage of a natural experiment and studied the social networks that developed in the first year of an executive-education Master of Hospital and Healthcare Administration (MHA) program in Jimma, Ethiopia.</p> <p>Case description</p> <p>We conducted a sociometric network analysis, which included all program participants and supporters (formally affiliated educators and mentors). We studied two networks: the Trainee Network (all 25 trainees) and the Trainee-Supporter Network (25 trainees and 38 supporters). The independent variable of interest was out-degree, the number of program-related connections reported by each respondent. We assessed social capital exchange in terms of resource exchange, both informational and functional. Contingency table analysis for relational data was used to evaluate the relationship between out-degree and informational and functional exchange.</p> <p>Discussion and evaluation</p> <p>Both networks demonstrated growth and inclusion of most or all network members. In the Trainee Network, those with the highest level of out-degree had the highest reports of informational exchange, χ<sup>2 </sup>(1, <it>N </it>= 23) = 123.61, p < 0.01. We did not find a statistically significant relationship between out-degree and functional exchange in this network, χ<sup>2</sup>(1, <it>N </it>= 23) = 26.11, p > 0.05. In the Trainee-Supporter Network, trainees with the highest level of out-degree had the highest reports of informational exchange, χ<sup>2 </sup>(1, <it>N </it>= 23) = 74.93, p < 0.05. The same pattern held for functional exchange, χ<sup>2 </sup>(1, <it>N </it>= 23) = 81.31, p < 0.01.</p> <p>Conclusions</p> <p>We found substantial and productive development of social networks in the first year of a healthcare management capacity-building program. Environmental constraints, such as limited access to information and communication technologies, or challenges with transportation and logistics, may limit the ability of some participants to engage in the networks fully. This work suggests that intentional social network development may be an important opportunity for capacity-building programs as healthcare systems improve their ability to manage resources and tackle emerging problems.</p

    Towards Heat-stable Oxytocin Formulations: Analysis of Degradation Kinetics and Identification of Degradation Products

    Get PDF
    Purpose. To investigate degradation kinetics of oxytocin as a function of temperature and pH, and identify the degradation products. Materials and Methods. Accelerated degradation of oxytocin formulated at pH 2.0, 4.5, 7.0 and 9.0 was performed at 40, 55, 70 and 80°C. Degradation rate constants were determined from RP-HPLC data. Formulations were characterized by HP-SEC, UV absorption and fluorescence spectroscopy. Degradation products were identified by ESI-MS/MS. Results. The loss of intact oxytocin in RP-HPLC was pH- and temperature-dependent and followed (pseudo) first order kinetics. Degradation was fastest at pH 9.0, followed by pH 7.0, pH 2.0 and pH 4.5. The Arrhenius equation proved suitable to describe the kinetics, with the highest activation energy (116.3 kJ/mol) being found for pH 4.5 formulations. At pH 2.0 deamidation of Gln 4, Asn 5, and Gly 9-NH2, as well as combinations thereof were found. At pH 4.5, 7.0 and 9.0, the formation of tri- and tetrasulfidecontaining oxytocin as well as different types of disulfide and dityrosine-linked dimers were found to occur. Beta-elimination and larger aggregates were also observed. At pH 9.0, mono-deamidation of Gln 4, Asn 5, and Gly 9-NH2 additionally occurred. Conclusions. Multiple degradation products of oxytocin have been identified unequivocally, including various deamidated species, intramolecular oligosulfides and covalent aggregates. The strongly pH dependent degradation can be described by the Arrhenius equation. KEY WORDS: aggregation; Arrhenius kinetics; degradation; mass spectrometry; oxytocin
    corecore