2,503 research outputs found

    Studies of oxide/ZnO near-interfacial defects by photoluminescence and deep level transient spectroscopy

    Get PDF
    The evolution of near-interfacial defects from Al2 O3 ZnO and MgOZnO upon thermal annealing has been studied by photoluminescence, deep level transient spectroscopy, and secondary ion mass spectroscopy. We find that all the results are strongly connected and that they point to the direction that Zn outdiffuses from ZnO to the oxide layer during annealing and creates deep level defects near the interfacial region. These defects reduce the band-edge emission and increase the deep level emission at 2.37 eV. Our study shows that the oxide/ZnO interface is relatively fragile and caution must be taken for making metal-oxide-ZnO based transistors and light emitting diodes. © 2008 American Institute of Physics.published_or_final_versio

    Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging

    Get PDF
    Over the years, biological imaging has seen many advances, allowing scientists to unfold many of the mysteries surrounding biological processes. The ideal imaging resolution would be in nanometres, as most biological processes occur at this scale. Nanotechnology has made this possible with functionalised nanoparticles that can bind to specific targets and trace processes at the cellular and molecular level. Quantum dots (QDs) or semiconductor nanocrystals are luminescent particles that have the potential to be the next generation fluorophores. This paper is an overview of the basics of QDs and their role as fluorescent probes for various biological imaging applications. Their potential clinical applications and the limitations that need to be overcome have also been discussed

    Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures

    Get PDF
    Metallic nanoparticles (NPs) support localized surface plasmon resonances (LSPRs), which enable to concentrate sunlight at the active layer of solar cells. However, full-wave modeling of the plasmonic solar cells faces great challenges in terms of huge computational workload and bad matrix condition. It is tremendously difficult to accurately and efficiently simulate near-field multiple scattering effects from plasmonic NPs embedded into solar cells. In this work, a preconditioned volume integral equation (VIE) is proposed to model plasmonic organic solar cells (OSCs). The diagonal block preconditioner is applied to different material domains of the device structure. As a result, better convergence and higher computing efficiency are achieved. Moreover, the calculation is further accelerated by two-dimensional periodic Green’s functions. Using the proposed method, the dependences of optical absorption on the wavelengths and incident angles are investigated. Angular responses of the plasmonic OSCs show the super-Lambertian absorption on the plasmon resonance but near-Lambertian absorption off the plasmon resonance. The volumetric method of moments and explored physical understanding are of great help to investigate the optical responses of OSCs

    Minimal lepton flavor violating realizations of minimal seesaw models

    Full text link
    We study the implications of the global U(1)R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1)R, we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1)R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on mu to e gamma, mu to 3e and mu to e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B - L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B - L asymmetries consistent with the observed baryon asymmetry of the Universe.Comment: 21 pages, 4 figures; version 2: Discussion on possible generic models extended, typos corrected, references added. Version matches publication in JHE

    Rapid induction of autoantibodies during ARDS and septic shock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the induction of humoral responses directed against human autoantigens during acute inflammation. We utilized a highly sensitive antibody profiling technology to study autoantibodies in patients with acute respiratory distress syndrome (ARDS) and severe sepsis, conditions characterized by intensive immune activation leading to multiple organ dysfunction.</p> <p>Methods</p> <p>Using Luciferase Immunoprecipitation Systems (LIPS), a cohort of control, ARDS and sepsis patients were tested for antibodies to a panel of autoantigens. Autoantibody titers greater than the mean plus 3 SD of the 24 control samples were used to identify seropositive samples. Available longitudinal samples from different seropositive ARDS and sepsis patient samples, starting from within the first two days after admission to the intensive care, were then analyzed for changes in autoantibody over time.</p> <p>Results</p> <p>From screening patient plasma, 57% of ARDS and 46% of septic patients without ARDS demonstrated at least one statistically significant elevated autoantibody compared to the controls. Frequent high titer antibodies were detected against a spectrum of autoantigens including potassium channel regulator, gastric ATPase, glutamic decarboxylase-65 and several cytokines. Analysis of serial samples revealed that several seropositive patients had low autoantibodies at early time points that often rose precipitously and peaked between days 7-14. Further, the use of therapeutic doses of corticosteroids did not diminish the rise in autoantibody titers. In some cases, the patient autoantibody titers remained elevated through the last serum sample collected.</p> <p>Conclusion</p> <p>The rapid induction of autoantibodies in ARDS and severe sepsis suggests that ongoing systemic inflammation and associated tissue destruction mediate the break in tolerance against these self proteins.</p

    The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for Acute Respiratory Distress Syndrome

    Get PDF
    BACKGROUND: The predictive role of many cytokines has not been well defined in Acute Respiratory Distress Syndrome (ARDS). METHODS: We measured prospectively IL-4, IL-6, IL-6 receptor, IL-8, and IL-10, in the serum and bronchoalveolar lavage fluid (BALF) in 59 patients who were admitted to ICU in order to identify predictive factors for the course and outcome of ARDS. The patients were divided into three groups: those fulfilling the criteria for ARDS (n = 20, group A), those at risk for ARDS and developed ARDS within 48 hours (n = 12, group B), and those at risk for ARDS but never developed ARDS (n = 27, group C). RESULTS: An excellent negative predictive value for ARDS development was found for IL-6 in BALF and serum (100% and 95%, respectively). IL-8 in BALF and IL-8 and IL-10 serum levels were higher in non-survivors in all studied groups, and were associated with a high negative predictive value. A significant correlation was found between IL-8 and APACHE score (r = 0.60, p < 0.0001). Similarly, IL-6 and IL-6r were highly correlated with PaO2/FiO2 (r = -0.27, p < 0.05 and r = -0.55, p < 0.0001, respectively). CONCLUSIONS: BALF and serum levels of the studied cytokines on admission may provide valuable information for ARDS development in patients at risk, and outcome in patients either in ARDS or in at risk for ARDS

    Emotional intelligence buffers the effect of physiological arousal on dishonesty

    Get PDF
    We studied the emotional processes that allow people to balance two competing desires: benefitting from dishonesty and keeping a positive self-image. We recorded physiological arousal (skin conductance and heart rate) during a computer card game in which participants could cheat and fail to report a certain card when presented on the screen to avoid losing their money. We found that higher skin conductance corresponded to lower cheating rates. Importantly, emotional intelligence regulated this effect; participants with high emotional intelligence were less affected by their physiological reactions than those with low emotional intelligence. As a result, they were more likely to profit from dishonesty. However, no interaction emerged between heart rate and emotional intelligence. We suggest that the ability to manage and control emotions can allow people to overcome the tension between doing right or wrong and license them to bend the rules

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al

    Nonlinear Localization in Metamaterials

    Full text link
    Metamaterials, i.e., artificially structured ("synthetic") media comprising weakly coupled discrete elements, exhibit extraordinary properties and they hold a great promise for novel applications including super-resolution imaging, cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom for metamaterial design that allows for tuneability and multistability, properties that may offer altogether new functionalities and electromagnetic characteristics. The combination of discreteness and nonlinearity may lead to intrinsic localization of the type of discrete breather in metallic, SQUID-based, and PT{\cal PT}-symmetric metamaterials. We review recent results demonstrating the generic appearance of breather excitations in these systems resulting from power-balance between intrinsic losses and input power, either by proper initialization or by purely dynamical procedures. Breather properties peculiar to each particular system are identified and discussed. Recent progress in the fabrication of low-loss, active and superconducting metamaterials, makes the experimental observation of breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte
    corecore