209 research outputs found
Young ovine death during hyperimmunization: crotalic envenomation or copper toxicosis?
The unfavorable evolution of a young ovine during hyperimmunization process with Crotalus durissus terrificus venom was investigated in order to differentiate its origin between ophidic envenomation and copper toxicosis. Clinical, laboratory, necroscopic and histological exams as well as evaluation and measurement of heavy metals (copper) in the kidneys and in the liver were carried out. Blood counts revealed anemia and serological tests showed high levels of blood urea nitrogen, creatinine, aspartate aminotransferase, creatine phosphokinase, total bilirubin and indirect bilirubin; which indicates liver, kidney and skeletal muscle damages. At necropsy, the animal presented hepatopathy and nephropathy. Histological examination revealed renal and hepatic features that may imply copper intoxication. Copper levels were 237.8 µg/g in the liver and 51.2 µg/g in the kidneys. Although the amount of metal found in both organs was below the level that can cause death, according to the literature, anatomopathological signs were suggestive of copper intoxication. Therefore, the hypothesis of metal toxicosis during the hyperimmunization process became more consistent than the crotalic envenomation one
HLA haplotypes associated with hemochromatosis mutations in the Spanish population
BACKGROUND: The present study is an analysis of the frequencies of HLA-A and -B antigens and HLA haplotypes in two groups of individuals homozygous for the two main HFE mutations (C282Y and H63D) and a group heterozygous for the S65C mutation. METHODS: The study population includes: 1123 healthy individuals, 100 homozygous for the C282Y mutation, 138 homozygous for the H63D mutation and 17 heterozygous for the S65C mutation. HFE and HLA alleles were detected using DNA-based and microlymphocytotoxicity techniques respectively. RESULTS: An expected significant association between C282Y and the HLA-A3/B7 haplotype was found, but other HLA haplotypes carrying the -A3 antigen were found: HLA-A3/B62 and HLA-A3/B44. Also, a significant association between H63D mutation and HLA-A29/B44 haplotype was found, and again other HLA haplotypes carrying the HLA-A29 antigen were also found: HLA-A29/B14 and HLA-A29/B62. In addition, the S65C mutation seems to be associated with a HLA haplotype carrying the HLA-A26 antigen. CONCLUSION: These findings clearly suggest that HLA-A3/B7 and HLA-A29/B44 are the ancestral haplotypes from which the C282Y and H63D mutations originated, respectively. The frequencies of these mutations in different populations, their geographical distribution, and the degree of the statistical association to the ancestral haplotypes, suggest that the H63D mutation must have occurred earlier than the C282Y mutation
Production of fructooligosaccharides and b-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum
The production of fructooligosaccharides
(FOS) and b-fructofuranosidase (FFase) by immobilized
cells of Penicillium expansum was evaluated. In an initial
stage, different low-cost materials including synthetic fiber,
polyurethane foam, stainless steel sponge, loofah sponge,
and cork oak were tested as carrier for the fungus immobilization.
Additionally, the influence of the inoculum age
(1 or 3 weeks) on cells immobilization, FOS and FFase
production was also verified. Synthetic fiber and polyurethane
foam were the best materials for P. expansum
immobilization (2.21 and 1.98 g/g carrier, respectively)
and FOS production (120.3 and 104.8 g/l), and gave also
high results of FFase activity (23.01 and 32.42 U/ml).
Then, the production of FOS and FFase by repeated batch
fermentation with P. expansum immobilized on synthetic
fiber was studied, aiming to improve the batch fermentation
results. The results obtained in this stage were very
promising with FOS yields of 87, 72, and 44 %, in the 3
initial cycles (60 h), respectively; the FFase activity was
constant throughout the process (6 cycles, 96 h). Repeated
batch fermentation with immobilized cells of P. expansum
was found as being a technology with great potential for
FOS and FFase production on industrial scaleThe financial support from FCT, the Portuguese Foundation for Science and Technology (research grant SFRH/BPD/38212/2007) is gratefully acknowledged
Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster
Background: Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Methodology: Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have ‘‘generic repellent detector(s),’ ’ which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the ‘‘empty neuron’ ’ and showed to be sensitive to the three insect repellents. Conclusions: For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have als
The skull of Epidolops ameghinoi from the early Eocene Itaboraí fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia
The skull of the polydolopimorphian marsupialiform Epidolops ameghinoi is described
in detail for the first time, based on a single well-preserved cranium and associated left
and right dentaries plus additional craniodental fragments, all from the early Eocene
(53-50 million year old) Itaboraí fauna in southeastern Brazil. Notable craniodental
features of E. ameghinoi include absence of a masseteric process, very small
maxillopalatine fenestrae, a prominent pterygoid fossa enclosed laterally by a
prominent ectopterygoid crest, an absent or tiny transverse canal foramen, a simple,
planar glenoid fossa, and a postglenoid foramen that is immediately posterior to the
postglenoid process. Most strikingly, the floor of the hypotympanic sinus was
apparently unossified, a feature found in several stem marsupials but absent in all
known crown marsupials. "Type II" marsupialiform petrosals previously described from
Itaboraí plausibly belong to E. ameghinoi; in published phylogenetic analyses, these
petrosals fell outside (crown-clade) Marsupialia. "IMG VII" tarsals previously referred to
E. ameghinoi do not share obvious synapomorphies with any crown marsupial clade,
nor do they resemble those of the only other putative polydolopimorphians represented
by tarsal remains, namely the argyrolagids. Most studies have placed
Polydolopimorphia within Marsupialia, related to either Paucituberculata, or to
Microbiotheria and Diprotodontia. However, diprotodonty almost certainly evolved
independently in polydolopimorphians, paucituberculatans and diprotodontians, and
Epidolops does not share obvious synapomorphies with any marsupial order.
Epidolops is dentally specialized, but several morphological features appear to be
more plesiomorphic than any crown marsupial. It seems likely Epidolops that falls
outside Marsupialia, as do morphologically similar forms such as Bonapartherium and
polydolopids. Argyrolagids differ markedly in their known morphology from Epidolops
but share some potential apomorphies with paucituberculatans. It is proposed that
Polydolopimorphia as currently recognised is polyphyletic, and that argyrolagids (and
possibly other taxa currently included in Argyrolagoidea, such as groeberiids and
patagoniids) are members of Paucituberculata. This hypothesis is supported by
Bayesian non-clock phylogenetic analyses of a total evidence matrix comprising DNA
sequence data from five nuclear protein-coding genes, indels, retroposon insertions
and morphological characters: Epidolops falls outside Marsupialia, whereas
argyrolagids form a clade with the paucituberculatans Caenolestes and Palaeothentes,
regardless of whether the Type II petrosals and IMG VII tarsals are used to score
characters for Epidolops or not. There is no clear evidence for the presence of crown
marsupials at Itaboraí, and it is possible that the origin and early evolution of
Marsupialia was restricted to the "Austral Kingdom" (southern South America,
Antarctica, and Australia)
- …