18 research outputs found

    Low literacy and written drug information: information-seeking, leaflet evaluation and preferences, and roles for images

    Get PDF
    Background Low-literate patients are at risk to misinterpret written drug information. For the (co-) design of targeted patient information, it is key to involve this group in determining their communication barriers and information needs. Objective To gain insight into how people with low literacy use and evaluate written drug information, and to identify ways in which they feel the patient leaflet can be improved, and in particular how images could be used. Setting Food banks and an education institution for Dutch language training in the Netherlands. Method Semi-structured focus groups and individual interviews were held with low-literate participants (n = 45). The thematic framework approach was used for analysis to identify themes in the data. Main outcome measure Low-literate people’s experience with patient information leaflets, ideas for improvements, and perceptions on possible uses for visuals. Results Patient information leaflets were considered discouraging to use, and information difficult to find and understand. Many rely on alternative information sources. The leaflet should be shorter, and improved in terms of organisation, legibility and readability. Participants thought images could increase the leaflet’s appeal, help ask questions, provide an overview, help understand textual information, aid recall, reassure, and even lead to increased confidence, empowerment and feeling of safety. Conclusion Already at the stages of paying attention to the leaflet and maintaining interest in the message, low-literate patients experience barriers in the communication process through written drug information. Short, structured, visual/textual explanations can lower the motivational threshold to use the leaflet, improve understanding, and empower the low-literate target group

    Logic goes in vitro

    No full text

    Molecular computing by PNA:PNA duplex formation

    No full text
    Molecular computing is potentially one of the most powerful tools for the development of massive parallel computing protocols. In the present paper, a first example of the use of PNA:PNA interactions in molecular computing is described. A series of short PNA sequences have been designed with a four base stretch coding for variables and solutions. Hybridization of the components in different combinations was tested both in solution and in a microarray format. A series of PNA representing the solutions were spotted on a microarray surface in order to simulate the hardware. A series of PNA representing the variables, labeled with TAMRA, were used to interrogate the device enabling to solve non-deterministic logic operations. The system was shown to be able to solve a two-variable equation with a high signal to noise ratio. This paper intends to provide a proof of principle that PNA, on account of their stability and specificity of binding, are most suitable for constructing organic-type computers
    corecore