18 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent

    Get PDF
    Abstract This work proposes a kinetic model for the reactions involved in the heterogeneous copper-based Fenton-type oxidation of mixed recalcitrant compounds in a real industrial effluent from the alkaline sulfite treatment of wood. This kind of treatment is unusual in this industry due to the complexity of the effluents and the high costs involved in total mineralization of the organic matter. Nevertheless, conversion of recalcitrant to degradable compounds and catalyst recovery can make the difference. The complexity of the effluent and the great number of compounds formed as intermediates, make extremely difficult the identification and quantification of the individual reactions that occur during oxidation. To solve this drawback TOC parameter was used as a representative measurement. To verify the level of TOC degradation produced by the heterogeneous catalysis reaction, experiences of homogeneous catalysis and adsorption were accomplished. The studied temperature range was 45–80 °C. A “two-step” kinetic model was applied to TOC reduction in heterogeneous and homogeneous oxidations, admitting two sequential steps of oxidation: a first fast stage (“seconds stage”) followed by a slow one (“minutes stages”). Kinetic constants were obtained for both processes and activation energies were also determined for the “minutes stage” step (33.17 kJ/mol and 15.13 kJ/mol, respectively). Homogeneous catalysis studies confirm mass transfer limitations in heterogeneous oxidations. Experiences of adsorption of organic matter on CuO/γ-Al2O3 catalyst demonstrated that this phenomenon is exothermic and cannot be neglected. The activation energy of adsorption was determined as 7.32 kJ/mol. Catalysts were characterized through SEM, EDS, XRD, FTIR, and TGA. Graphical Abstrac
    corecore