16 research outputs found
Strong coupling, discrete symmetry and flavour
We show how two principles - strong coupling and discrete symmetry - can work
together to generate the flavour structure of the Standard Model. We propose
that in the UV the full theory has a discrete flavour symmetry, typically only
associated with tribimaximal mixing in the neutrino sector. Hierarchies in the
particle masses and mixing matrices then emerge from multiple strongly coupled
sectors that break this symmetry. This allows for a realistic flavour
structure, even in models built around an underlying grand unified theory. We
use two different techniques to understand the strongly coupled physics:
confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both
approaches yield equivalent results and can be represented in a clear,
graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure
Searching for radiative neutrino mass generation at the LHC
In this talk (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015), I describe the general characteristics of radiative neutrino mass models that can be probed at the LHC. I then cover the specific constraints on a new, explicit model of this type
Exploding operators for Majorana neutrino masses and beyond
Abstract
Building UV completions of lepton-number-violating effective operators has proved to be a useful way of studying and classifying models of Majorana neutrino mass. In this paper we describe and implement an algorithm that systematises this model-building procedure. We use the algorithm to generate computational representations of all of the tree-level completions of the operators up to and including mass-dimension 11. Almost all of these correspond to models of radiative neutrino mass. Our work includes operators involving derivatives, updated estimates for the bounds on the new-physics scale associated with each operator, an analysis of various features of the models, and a look at some examples. We find that a number of operators do not admit any completions not also generating lower-dimensional operators or larger contributions to the neutrino mass, ruling them out as playing a dominant role in the neutrino-mass generation. Additionally, we show that there are at most five models containing three or fewer exotic multiplets that predict new physics that must lie below 100 TeV. Accompanying this work we also make available a searchable database containing all of our results and the code used to find the completions. We emphasise that our methods extend beyond the study of neutrino-mass models, and may be useful for generating completions of high-dimensional operators in other effective field theories. Example code: ref. [37]
Has the origin of the third-family fermion masses been determined?
Precision measurements of the Higgs couplings are, for the first time, directly probing the mechanism of fermion mass generation. The purpose of this work is to determine to what extent these measurements can distinguish between the tree-level mechanism of the Standard Model and the theoretically motivated alternative of radiative mass generation. Focusing on the third-family, we classify the minimal one-loop models and find that they fall into two general classes. By exploring several benchmark models in detail, we demonstrate that a radiative origin for the tau-lepton and bottom-quark masses is consistent with current observations. While future colliders will not be able to rule out a radiative origin, they can probe interesting regions of parameter space
Radiative muon mass models and (g − 2)<inf>μ</inf>
Abstract
Recent measurements of the Higgs-muon coupling are directly probing muon mass generation for the first time. We classify minimal models with a one-loop radiative mass mechanism and show that benchmark models are consistent with current experimental results. We find that these models are best probed by measurements of (g − 2)μ, even when taking into account the precision of Higgs measurements expected at future colliders. The current (g − 2)μ anomaly, if confirmed, could therefore be a first hint that the muon mass has a radiative origin