71 research outputs found
AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior
Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ 3 (AP2γ 3, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ 3 is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ 3 in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ 3-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ 3 deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and d epressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.We acknowledge the excellent technical expertise of Luís Martins and Andrea
Steiner-Mezzadri. We would also like to acknowledge Magdalena Götz for the
insightful comments on the paper. AMP, PP, ARS, JS, VMS, NDA and JFO received
fellowships from the Portuguese Foundation for Science and Technology (FCT). LP
received fellowship from FCT and her work is funded by FCT (IF/01079/2014) and Bial
Foundation (427/14) projects. This work was cofunded by the Life and Health
Sciences Research Institute (ICVS), and Northern Portugal Regional Operational
Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through
the European Regional Development Fund (FEDER) (projects NORTE-01-0145-
FEDER-000013 and NORTE-01-0145-FEDER-000023). This work has been also funded
by FEDER funds, through the Competitiveness Factors Operational Programme
(COMPETE), and by National funds, through the FCT, under the scope of the project
POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio
Borrelia Burgdorferi Induces a Type I Interferon Response During Early Stages of Disseminated Infection in Mice
BACKGROUND: Lyme borrelia genotypes differ in their capacity to cause disseminated disease. Gene array analysis was employed to profile the host transcriptome induced by Borrelia burgdorferi strains with different capacities for causing disseminated disease in the blood of C3H/HeJ mice during early infection.
RESULTS: B. burgdorferi B515, a clinical isolate that causes disseminated infection in mice, differentially regulated 236 transcripts (P \u3c 0.05 by ANOVA, with fold change of at least 2). The 216 significantly induced transcripts included interferon (IFN)-responsive genes and genes involved in immunity and inflammation. In contrast, B. burgdorferi B331, a clinical isolate that causes transient skin infection but does not disseminate in C3H/HeJ mice, stimulated changes in only a few genes (1 induced, 4 repressed). Transcriptional regulation of type I IFN and IFN-related genes was measured by quantitative RT-PCR in mouse skin biopsies collected from the site of infection 24 h after inoculation with B. burgdorferi. The mean values for transcripts of Ifnb, Cxcl10, Gbp1, Ifit1, Ifit3, Irf7, Mx1, and Stat2 were found to be significantly increased in B. burgdorferi strain B515-infected mice relative to the control group. In contrast, transcription of these genes was not significantly changed in response to B. burgdorferi strain B331 or B31-4, a mutant that is unable to disseminate.
CONCLUSIONS: These results establish a positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction in a murine model of Lyme disease
- …