61 research outputs found

    Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

    Get PDF
    Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation

    Resource heterogeneity and community structure: A case study in Heliconia imbricata Phytotelmata

    Full text link
    Complex or non-additive differences in the distribution and abundance of arthropod species inhabiting the water-filled bracts of Heliconia imbricata can be created by simple manipulations of resource levels. The primary resources for these assemblages are the corollas of the flowers that accumulate in the bracts. Removing or adding corollas to individual bracts changes the pattern in the abundance of arthropod species within each bract such that bracts with different treatments ultimately differ in composition and numerical associations among species. These results suggest that direct and indirect resource-mediated factors can structure or significantly affect the distribution and abundance of species in these and perhaps other assemblages. Thus, in natural communities, if resources are heterogeneous among patches (such as among the bracts in this study) structure in a given patch may be a function of the resource level of that patch and can differ significantly from neighboring patches that provide different resource levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47788/1/442_2004_Article_BF00665591.pd

    Long-term bio-cultural heritage: exploring the intermediate disturbance hypothesis in agro-ecological landscapes (Mallorca, c. 1850–2012)

    Full text link

    Interaction of aluminium and drought stress on root growth and crop yield on acid soils

    Full text link

    Species-Specific Traits Rather Than Resource Partitioning Mediate Diversity Effects on Resource Use

    Get PDF
    Background: The link between biodiversity and ecosystem processes has firmly been established, but the mechanisms underpinning this relationship are poorly documented. Most studies have focused on terrestrial plant systems where resource use can be difficult to quantify as species rely on a limited number of common resources. Investigating resource use at the bulk level may not always be of sufficient resolution to detect subtle differences in resource use, as species-specific nutritional niches at the biochemical level may also moderate diversity effects on resource use. Methodology/Principal Findings: Here we use three co-occurring marine benthic echinoderms (Brissopsis lyrifera, Mesothuria intestinalis, Parastichopus tremulus) that feed on the same phytodetrital food source, to determine whether resource partitioning is the principal mechanism underpinning diversity effects on resource use. Specifically we investigate the use of phytodetrital pigments ( chlorophylls and carotenoids) because many of these are essential for biological functions, including reproduction. Pigments were identified and quantified using reverse-phase high performance liquid Chromatography ( HPLC) and data were analysed using a combination of extended linear regression with generalised least squares (GLS) estimation and standard multivariate techniques. Our analyses reveal no species-specific selectivity for particular algal pigments, confirming that these three species do not partition food resources at the biochemical level. Nevertheless, we demonstrate increased total resource use in diverse treatments as a result of selection effects and the dominance of one species (B. lyrifera). Conclusion: Overall, we found no evidence for resource partitioning at the biochemical level, as pigment composition was similar between individuals, which is likely due to plentiful food availability. Reduced intra-specific competition in the species mixture combined with greater adsorption efficiency and differences in feeding behaviour likely explain the dominant use of resources by B. lyrifera
    corecore