225 research outputs found
Clinical and radiographic outcomes of the treatment of adolescent idiopathic scoliosis with segmental pedicle screws and combined local autograft and allograft bone for spinal fusion: a retrospective case series
<p>Abstract</p> <p>Background</p> <p>High morbidity has been reported with iliac crest bone graft harvesting; however, donor bone is typically necessary for posterior spinal fusion. Autograft bone combined with allograft may reduce the morbidity associated with iliac crest bone harvesting and improve the fusion rate. Our aim in this study was to determine the presence of complications, pseudarthrosis, non-union, and infection using combined <it>in situ </it>local autograft bone and freeze-dried cancellous allograft bone in patients undergoing posterior spinal fusion for the treatment of adolescent idiopathic scoliosis.</p> <p>Methods</p> <p>A combination of <it>in situ </it>local autograft bone and freeze-dried cancellous allograft blocks were used in 50 consecutive patients with adolescent idiopathic scoliosis treated by posterior fusion and Moss Miami pedicle screw instrumentation. Results were assessed clinically and radiographically and quality of life and functional outcome was evaluated by administration of a Chinese version of the SRS-22 survey.</p> <p>Results</p> <p>There were 41 female and 9 male patients included for analysis with an average age of 14.7 years (range, 12-17). All patients had a minimum follow-up of 18 months (range, 18 to 40 months). The average preoperative Cobb angle was 49.8° (range, 40° to 86°). The average number of levels fused was 9.8 (range, 6-15). Patients had a minimum postoperative follow-up of 18 months. At final follow-up, the average Cobb angle correction was 77.8% (range, 43.4 to 92.5%). There was no obvious loss in the correction, and the average loss of correction was 1.1° (range, 0° to 4°). There was no pseudarthrosis and no major complications.</p> <p>Conclusions</p> <p><it>In situ </it>autograft bone combined with allograft bone may be a promising method enhances spinal fusion in AIS treated with pedicle screw placement. By eliminating the need for iliac crest bone harvesting, significant morbidity may be avoided.</p
Competition at silent synapses in reinnervated skeletal muscle
Synaptic connections are made and broken in an activity-dependent manner in diverse regions of
the nervous system. However, whether activity is strictly necessary for synapse elimination has not
been resolved directly. Here we report that synaptic terminals occupying motor endplates made
electrically silent by tetrodotoxin and alpha-bungarotoxin block were frequently displaced by regenerating
axons that were also both inactive and synaptically ineffective. Thus, neither evoked nor spontaneous
activation of acetylcholine receptors is required for competitive reoccupation of
neuromuscular synaptic sites by regenerating motor axons
Minimally invasive scoliosis surgery: an innovative technique in patients with adolescent idiopathic scoliosis
Minimally invasive spine surgery is becoming more common in the treatment of adult lumbar degenerative disorders. Minimally invasive techniques have been utilized for multilevel pathology, including adult lumbar degenerative scoliosis. The next logical step is to apply minimally invasive surgical techniques to the treatment of adolescent idiopathic scoliosis (AIS). However, there are significant technical challenges of performing minimally invasive surgery on this patient population. For more than two years, we have been utilizing minimally invasive spine surgery techniques in patients with adolescent idiopathic scoliosis. We have developed the present technique to allow for utilization of all standard reduction maneuvers through three small midline skin incisions. Our technique allows easy passage of contoured rods, placement of pedicle screws without image guidance, and allows adequate facet osteotomy to enable fusion. There are multiple potential advantages of this technique, including: less blood loss, shorter hospital stay, earlier mobilization, and relatively less pain and need for pain medication. The operative time needed to complete this surgery is longer. We feel that a minimally invasive approach, although technically challenging, is a feasible option in patients with adolescent idiopathic scoliosis. Although there are multiple perceived benefits, long term data is needed before it can be recommended for routine use
Temporary use of shape memory spinal rod in the treatment of scoliosis
NiTinol shape memory alloy is characterized by its malleability at low temperatures and its ability to return to a preconfigured shape above its activation temperature. This process can be utilized to assist in scoliosis correction. The goal of this retrospective study was to evaluate the clinical and radiographic results of intraoperative use of shape memory alloy rod in the correction of scoliosis. From May 2002 to September 2006, 38 scoliosis patients (ranging from 50° to 120°; 22 cases over 70°) who underwent shape memory alloy-assisted correction in our institute were reviewed. During the operation, a shape memory alloy rod served as a temporary correction tool. Following correction, the rod was replaced by a rigid rod. The mean blood loss at surgery was 680 ± 584 ml; the mean operative time was 278 ± 62 min. The major Cobb angle improved from an average 78.4° preoperatively to 24.3° postoperatively (total percent correction 71.4%). In 16 patients with a major curve <70° and flexibility of 52.7%, the deformity improved from 58.4° preoperatively to 12.3° postoperatively (percent correction, 78.9%). In 22 patients with a major curve >70° and flexibility of 25.6%, the deformity improved from 94.1° preoperatively to 30.1° postoperatively (percent correction, 68.1%). Only one case had a deep infection. There were no neurologic, vascular or correction-related complications such as screw pullout or metal fracture. The study shows that the intraoperative use of a shape memory rod is a safe and effective method to correct scoliosis
Peripheral neural cell sensitivity to mTHPC-mediated photodynamic therapy in a 3D in vitro model
Background: The effect of photodynamic therapy (PDT) on neural cells is important when tumours are within or adjacent to the nervous system. The purpose of this study was to investigate PDT using the photosensitiser, meta tetrahydroxyphenyl chlorin (mTHPC), on rat neurons and satellite glia, compared with human adenocarcinoma cell (MCF-7).Methods: Fluorescence microscopy confirmed that mTHPC was incorporated into all three cell types. Sensitivity of cells exposed to mTHPC-PDT (0–10 µg ml–1) was determined in a novel 3-dimensional collagen gel culture system. Cell death was quantified using propidium iodide and cell types were distinguished using immunocytochemistry. In some cases, neuron survival was confirmed by measuring subsequent neurite growth in monolayer culture.Results: MCF-7s and satellite glia were significantly more sensitive to PDT than neurons. Importantly, 4 µg ml–1 mTHPC PDT caused no significant neuron death compared with untreated controls but was sufficient to elicit substantial cell death in the other cell types. Initially, treatment reduced neurite length; neurons then extended neurites equivalent to those of untreated controls. The protocol was validated using hypericin (0–3 µg ml–1), which caused neuron death equivalent to other cell types.Conclusion: Neurons in culture can survive mTHPC-PDT under conditions sufficient to kill tumour cells and other nervous system cells
Surgical treatment of scoliosis: a review of techniques currently applied
In this review, basic knowledge and recent innovation of surgical treatment for scoliosis will be described. Surgical treatment for scoliosis is indicated, in general, for the curve exceeding 45 or 50 degrees by the Cobb's method on the ground that
Comparative analysis between shape memory alloy-based correction and traditional correction technique in pedicle screws constructs for treating severe scoliosis
The three-dimensional correction of severe rigid scoliosis has been improved by segmental pedicle screw instrumentation. However, there can be significant difficulty related to the use of a rigid rod, especially in the apex region of severe scoliosis. This study is a retrospective matched cohort study to evaluate the advantages of Nitinol shape memory alloy (SMA) rod-based correction by comparing the clinical and radiographic results obtained from using a temporary SMA rod and those from a standard rod in the correction of severe scoliosis. From May 2004 to September 2006, patients with matched curve type, ages at surgery, operative methods and fusion levels in our institute and instrumented with either SMA rods (n = 14) or traditional correction techniques (n = 16) were reviewed. In SMA group, the SMA rods served as a temporary intraoperative tool for deformity correction and were replaced by standard rods. The blood loss at surgery averaged 778 ± 285 ml in the traditional group and 585 ± 188 ml in the SMA group (P < 0.05). Operative time averaged 284 ± 53 min in the SMA group and 324 ± 41 min in the traditional group (P < 0.05). In the SMA group, the preoperative major curve was 92.6° ± 13.7° with a flexibility of 25.5 ± 7.3% was corrected to 29.4° ± 5.7° demonstrating a 68.4% immediate postoperative correction. In the traditional group, the preoperative major curve was 88.6° ± 14.6° with a flexibility of 29.3 ± 6.6% was corrected to 37.2° ± 7.3° demonstrating a 57.8% immediate postoperative correction. There was a statistic difference between the SMA group and traditional group in correction rate of the major thoracic curve. In the SMA group, one case suffered from deep infection 2 months postoperatively. In the traditional group, 6 of 16 cases suffered pedicle screw pull out or loosening during placement of the standard rod at the apex vertebrae on the concave side. In three cases, the mono-axial pedicle screws near the apex were abandoned and in five cases replaced with poly-axial pedicle screws. This study shows that the temporary use of SMA rod may reduce the operative time, blood loss, while improve the correction of the coronal plane when compared with standard techniques
Juvenile idiopathic scoliosis treated with posterior arthrodesis and segmental pedicle screw instrumentation before the age of 9 years: a 5-year follow-up
<p>Abstract</p> <p>Study design</p> <p>Retrospective study.</p> <p>Objective</p> <p>To evaluate the radiological results of fusion with segmental pedicle screw fixation in juvenile idiopathic scoliosis with a minimum 5-year follow-up.</p> <p>Summary of background data</p> <p>Progression of spinal deformity after posterior instrumentation and fusion in immature patients has been reported by several authors. Segmental pedicle screw fixation has been shown to be effective in controlling both coronal and sagittal plane deformities. However, there is no long term study of fusion with segmental pedicle screw fixation in these group of patients.</p> <p>Methods</p> <p>Seven patients with juvenile idiopathic scoliosis treated by segmental pedicle screw fixation and fusion were analyzed. The average age of the patients was 7.4 years (range 5–9 years) at the time of the operation. All the patients were followed up 5 years or more (range 5–8 years) and were all Risser V at the most recent follow up. Three dimensional reconstruction of the radiographs was obtained and 3DStudio Max software was used for combining, evaluating and modifying the technical data derived from both 2d and 3d scan data.</p> <p>Results</p> <p>The preoperative thoracic curve of 56 ± 15° was corrected to 24 ± 17° (57% correction) at the latest follow-up. The lumbar curve of 43 ± 14° was corrected to 23 ± 6° (46% correction) at the latest follow-up. The preoperative thoracic kyphosis of 37 ± 13° and the lumbar lordosis of 33 ± 13° were changed to 27 ± 13° and 42 ± 21°, respectively at the latest follow-up. None of the patients showed coronal decompensation at the latest follow-up. Four patients had no evidence of crankshaft phenomenon. In two patients slight increase in Cobb angle at the instrumented segments with a significant increase in AVR suggesting crankshaft phenomenon was seen. One patient had a curve increase in both instrumented and non instrumented segments due to incorrect strategy.</p> <p>Conclusion</p> <p>In juvenile idiopathic curves of Risser 0 patients with open triradiate cartilages, routine combined anterior fusion to prevent crankshaft may not be warranted by posterior segmental pedicle screw instrumentation.</p
Anatomical Differences Determine Distribution of Adenovirus after Convection-Enhanced Delivery to the Rat Brain
Background: Convection-enhanced delivery (CED) of adenoviruses offers the potential of widespread virus distribution in the brain. In CED, the volume of distribution (Vd) should be related to the volume of infusion (Vi) and not to dose, but when using adenoviruses contrasting results have been reported. As the characteristics of the infused tissue can affect convective delivery, this study was performed to determine the effects of the gray and white matter on CED of adenoviruses and similar sized super paramagnetic iron oxide nanoparticles (SPIO). Methodology/Principal Findings: We convected AdGFP, an adenovirus vector expressing Green Fluorescent Protein, a virus sized SPIO or trypan blue in the gray and white matter of the striatum and external capsule of Wistar rats and towards orthotopic infiltrative brain tumors. The resulting Vds were compared to Vi and transgene expression to SPIO distribution. Results show that in the striatum Vd is not determined by the Vi but by the infused virus dose, suggesting diffusion, active transport or receptor saturation rather than convection. Distribution of virus and SPIO in the white matter is partly volume dependent, which is probably caused by preferential fluid pathways from the external capsule to the surrounding gray matter, as demonstrated by co-infusing trypan blue. Distant tumors were reached using the white matter tracts but tumor penetration was limited. Conclusions/Significance: CED of adenoviruses in the rat brain and towards infiltrative tumors is feasible when regional anatomical differences are taken into account while SPIO infusion could be considered to validate proper catheter positioning and predict adenoviral distribution
- …