12 research outputs found

    A two-wheeled machine with a handling mechanism in two different directions

    Get PDF
    Despite the fact that there are various configurations of self-balanced two-wheeled machines (TWMs), the workspace of such systems is restricted by their current configurations and designs. In this work, the dynamic analysis of a novel configuration of TWMs is introduced that enables handling a payload attached to the intermediate body (IB) in two mutually perpendicular directions. This configuration will enlarge the workspace of the vehicle and increase its flexibility in material handling, objects assembly and similar industrial and service robot applications. The proposed configuration gains advantages of the design of serial arms while occupying a minimum space which is unique feature of TWMs. The proposed machine has five degrees of freedoms (DOFs) that can be useful for industrial applications such as pick and place, material handling and packaging. This machine will provide an advantage over other TWMs in terms of the wider workspace and the increased flexibility in service and industrial applications. Furthermore, the proposed design will add additional challenge of controlling the system to compensate for the change of the location of the COM due to performing tasks of handling in multiple directions

    PID, BFO-optimized PID, and PD-FLC control of a two-wheeled machine with two-direction handling mechanism: a comparative study

    Get PDF
    In this paper; three control approaches are utilized in order to control the stability of a novel five-degrees-of-freedom two-wheeled robotic machine designed for industrial applications that demand a limited-space working environment. Proportional–integral–derivative (PID) control scheme, bacterial foraging optimization of PID control method, and fuzzy logic control method are applied to the wheeled machine to obtain the optimum control strategy that provides the best system stabilization performance. According to simulation results, considering multiple motion scenarios, the PID controller optimized by bacterial foraging optimization method outperformed the other two control methods in terms of minimum overshoot, rise time, and applied input forces

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Adaptive Model Predictive Control of a Two-wheeled Robot Manipulator with Varying Mass

    No full text
    This paper presents the adaptive model predictive control approach for a two-wheeled robot manipulator with varying mass. The mass variation corresponds to the robot picking and placing objects or loads from one place to another. A linear parameter varying model of the system is derived consisting of local linear models of the system at different values of the varying parameter. An adaptive model predictive control controller is designed to control the fast-varying center of gravity angle in the inner loop. The reference for the inner loop is generated by a slower outer loop controlling the linear position using a linear quadratic Gaussian regulator. This adaptive model predictive control/linear quadratic Gaussian control system is simulated on the nonlinear model of the robot, and the closed-loop performance of the proposed scheme is compared with a system having inner/outer loop controllers as proportional integral derivative/proportional integral derivative, feedback linearization/linear quadratic Gaussian, and linear quadratic Gaussian/linear quadratic Gaussian. It is seen that adaptive model predictive control shows mostly superior and otherwise very good performance when compared to these benchmarks in terms of reference tracking and robustness to mass parameter variations

    Alterations in Folate Metabolism as a Possible Mechanism of Embryotoxicity

    No full text

    miRNAs: micro-managers of anticancer combination therapies

    No full text
    corecore