41 research outputs found
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Residual effects of natural Zn chelates on navy bean response, Zn leaching and soil status
greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the aging and residual effects of three natural organic Zn chelates [Zn-ethylenediaminedisuccinate (Zn-EDDS), Zn-polyhydroxyphenylcarboxylate and Zn-aminelignosulfonate] each administered in a single application to a first navy bean (Phaseolus vulgaris L.) crop at several different Zn application rates. In a second navy bean crop, we determined the following parameters: the extent of Zn leaching, the amount of available Zn remaining in soils, the amount of easily leachable Zn, the size of Zn fractions in soils, the pH and redox potential, the dry matter yield, and the soluble and total Zn concentrations in plants. The residual effect after 2 years of Zn fertilization mainly depended on the aging effect of Zn chelates and losses due to Zn leaching. The data relating to the evolution from the first to the second crop showed that the aging effect was noticeable in the calcareous soil. In the latter soil, the Zn-S,S-EDDS treatments showed greater decreases in the Zn uptake by plants than the other Zn treatments and the greatest Zn uptake by plants occurred when Zn was applied as Zn-aminelignosulfonate (10 mg Zn kg−1 rate, 6.85 mg Zn per lysimeter; 5 mg Zn kg−1 rate, 3.36 mg Zn per lysimeter). In contrast, in the calcareous soil, the maximum amount of Zn uptake, for the three chelates was 0.82 mg Zn per lysimeter. Consequently, a further application of Zn would be needed to prevent Zn deficiencies in the plants of a subsequent crop. The behaviour of the pH and Eh parameters in the soils and leachates did not depend on the natural Zn sources applied. In this study, the easily leachable Zn estimated by BaCl2 extraction was not adequate to predict Zn leaching from the soils in subsequent crops
