43 research outputs found

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    The Arabidopsis thaliana Brassinosteroid Receptor (AtBRI1) Contains a Domain that Functions as a Guanylyl Cyclase In Vitro

    Get PDF
    BACKGROUND: Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3′,5′-cyclic monophosphate (cGMP) from guanosine 5′-triphosphate (GTP). Cyclic GMP has been implicated in an increasing number of plant processes, including responses to abiotic stresses such as dehydration and salt, as well as hormones. PRINCIPLE FINDINGS: Here we used a rational search strategy based on conserved and functionally assigned residues in the catalytic centre of annotated GCs to identify candidate GCs in Arabidopsis thaliana and show that one of the candidates is the brassinosteroid receptor AtBR1, a leucine rich repeat receptor like kinase. We have cloned and expressed a 114 amino acid recombinant protein (AtBR1-GC) that harbours the putative catalytic domain, and demonstrate that this molecule can convert GTP to cGMP in vitro. CONCLUSIONS: Our results suggest that AtBR1 may belong to a novel class of GCs that contains both a cytosolic kinase and GC domain, and thus have a domain organisation that is not dissimilar to that of atrial natriuretic peptide receptors, NPR1 and NPR2. The findings also suggest that cGMP may have a role as a second messenger in brassinosteroid signalling. In addition, it is conceivable that other proteins containing the extended GC search motif may also have catalytic activity, thus implying that a significant number of GCs, both in plants and animals, remain to be discovered, and this is in keeping with the fact that the single cellular green alga Chlamydomonas reinhardtii contains over 90 annotated putative CGs

    Adenyl cyclases and cAMP in plant signaling - past and present

    Get PDF
    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins

    Haemato-oncology and burnout: an Italian survey

    Get PDF
    This cross-sectional survey aimed to evaluate the prevalence of burnout and estimated psychiatric disorders among haemato-oncology healthcare professionals in Italy. The aspects of work that respondents perceive as stressful and satisfying have also been examined. The assessments were made using the Maslach Burnout Inventory (MBI), General Health Questionnaire and a study-specific questionnaire. Logistic regression models were applied to show associations between different sources of work-related stress and burnout. Three hundred and eighty-seven out of 440 (87.95%) returned their questionnaires. The scores on MBI subscales indicate a high level of emotional exhaustion in 32.2% of the physicians and 31.9% of the nurses; a high level of Depersonalisation in 29.8 and 23.6%, respectively; and a low level of personal accomplishment in 12.4 and 15.3% respectively. The estimated prevalence of psychiatric disorders was 36.4% in physicians and 28.8% in nurses. Statistical analysis confirmed age, sex, personal dissatisfaction, physical tiredness and working with demanding patients to be associated with burnout. In conclusion, haemato-oncology healthcare professionals report a level of burnout and estimated psychiatric morbidity comparable to other oncological areas. Knowledge of the mechanisms of burnout and preventing and dealing with them is therefore a fundamental requirement for the improvement of quality in health services and job satisfaction

    Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service Sectors

    Get PDF
    Implementation science is a quickly growing discipline. Lessons learned from business and medical settings are being applied but it is unclear how well they translate to settings with different historical origins and customs (e.g., public mental health, social service, alcohol/drug sectors). The purpose of this paper is to propose a multi-level, four phase model of the implementation process (i.e., Exploration, Adoption/Preparation, Implementation, Sustainment), derived from extant literature, and apply it to public sector services. We highlight features of the model likely to be particularly important in each phase, while considering the outer and inner contexts (i.e., levels) of public sector service systems

    Cold birds under pressure: Can thermal substitution ease heat loss in diving penguins?

    No full text
    Thermoregulation could represent a significant fraction of the total energy budget of endotherms under unfavourable environmental conditions. This cost affects several traits of the ecology of an organism such as its behaviour, distribution, or life history. Heat produced by muscle contraction during activity can be used to pay for heat loss or thermoregulation in many species (known as “thermal substitution”). This study seeks to unite the effects of temperature, depth, and activity on the energetic costs of endotherm divers using the Magellanic penguin as model species and to evaluate whether penguins may benefit from thermal substitution. This species operates under highly variable temperature and depth conditions along its breeding range and provides an ideal natural experiment. A developed thermodynamic model describing foraging activity predicted that the major element affecting heat loss was depth, exacerbated by temperature. Birds living in colder waters are predicted to be able to minimize costs by executing shallower dives and benefit from thermal substitution by swimming faster, particularly during deeper dives. The model was evaluated in two contrasting scenarios: (1) when birds swim near the surface commuting to the foraging areas and (2) when birds dive to depth to forage. Activity data from tags on free-living penguins indicated two of these predictions were apparent; penguins generally travelled faster while commuting at the surface in colder waters, while birds from warmer water colonies dived deeper while foraging. Contrary to predictions, however, penguins swam slower at deeper depths during both descent and ascent phases of foraging dives. These results suggest that penguins may benefit from thermal substitution by swimming faster when birds perform shallow dives commuting to and back from foraging areas, but they provide no evidence of behavioural response (via swimming faster) for thermoregulation when diving to depth to forage. Reasons for this are discussed and include the relevance of prey abundance in 3-d space and maximizing dive duration by conserving oxygen reserves. The way the bird operates will have profound consequences for the energy needed and therefore necessary energy acquisition rates. Expansion of our findings to other diving endotherms might help explain both global activity patterns and energy flow in ecosystems.Fil: Ciancio Blanc, Javier Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Wilson, Rory P. Swansea University. College Of Sciences. Departament Of Biosciences; Reino Unid
    corecore