12 research outputs found

    Towards a resolution of some outstanding issues in transitive research: an empirical test on middle childhood

    Get PDF
    Transitive Inference (deduce B > D from B > C and C > D) can help us to understand other areas of sociocognitive development. Across three experiments, learning, memory, and the validity of two transitive paradigms were investigated. In Experiment 1 (N = 121), 7-year-olds completed a three-term nontraining task or a five-term task requiring extensive-training. Performance was superior on the three-term task. Experiment 2 presented 5–10-year-olds with a new five-term task, increasing learning opportunities without lengthening training (N = 71). Inferences improved, suggesting children can learn five-term series rapidly. Regarding memory, the minor (CD) premise was the best predictor of BD-inferential performance in both task-types. However, tasks exhibited different profiles according to associations between the major (BC) premise and BD inference, correlations between the premises, and the role of age. Experiment 3 (N = 227) helped rule out the possible objection that the above findings simply stemmed from three-term tasks with real objects being easier to solve than computer-tasks. It also confirmed that, unlike for five-term task (Experiments 1 & 2), inferences on three-term tasks improve with age, whether the age range is wide (Experiment 3) or narrow (Experiment 2). I conclude that the tasks indexed different routes within a dual-process conception of transitive reasoning: The five-term tasks indexes Type 1 (associative) processing, and the three-term task indexes Type 2 (analytic) processing. As well as demonstrating that both tasks are perfectly valid, these findings open up opportunities to use transitive tasks for educability, to investigate the role of transitivity in other domains of reasoning, and potentially to benefit the lived experiences of persons with developmental issues

    A cage-based training, cognitive testing and enrichment system optimized for rhesus macaques in neuroscience research.

    Get PDF
    In neurophysiological studies with awake non-human primates (NHP), it is typically necessary to train the animals over a prolonged period of time on a behavioral paradigm before the actual data collection takes place. Rhesus monkeys (Macaca mulatta) are the most widely used primate animal models in system neuroscience. Inspired by existing joystick- or touch-screen-based systems designed for a variety of monkey species, we built and successfully employed a stand-alone cage-based training and testing system for rhesus monkeys (eXperimental Behavioral Intrument, XBI). The XBI is mobile and easy to handle by both experts and non-experts; animals can work with only minimal physical restraints, yet the ergonomic design successfully encourages stereotypical postures with a consistent positioning of the head relative to the screen. The XBI allows computer-controlled training of the monkeys with a large variety of behavioral tasks and reward protocols typically used in systems and cognitive neuroscience research.peerReviewe

    The impact of cognitive testing on the welfare of group housed primates

    Get PDF
    Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra) at the Macaque Study Centre (Marwell Zoo). First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments

    Modulation of β-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5

    No full text
    corecore