64 research outputs found

    Structure of an Enzyme-Derived Phosphoprotein Recognition Domain

    Get PDF
    Membrane Associated Guanylate Kinases (MAGUKs) contain a protein interaction domain (GKdom) derived from the enzyme Guanylate Kinase (GKenz). Here we show that GKdom from the MAGUK Discs large (Dlg) is a phosphoprotein recognition domain, specifically recognizing the phosphorylated form of the mitotic spindle orientation protein Partner of Inscuteable (Pins). We determined the structure of the Dlg-Pins complex to understand the dramatic transition from nucleotide kinase to phosphoprotein recognition domain. The structure reveals that the region of the GKdom that once served as the GMP binding domain (GBD) has been co-opted for protein interaction. Pins makes significantly more contact with the GBD than does GMP, but primarily with residues that are conserved between enzyme and domain revealing the versatility of the GBD as a platform for nucleotide and protein interactions. Mutational analysis reveals that the GBD is also used to bind the GK ligand MAP1a, suggesting that this is a common mode of MAGUK complex assembly. The GKenz undergoes a dramatic closing reaction upon GMP binding but the protein-bound GKdom remains in the ‘open’ conformation indicating that the dramatic conformational change has been lost in the conversion from nucleotide kinase to phosphoprotein recognition domain

    Protection of flunarizine on cerebral mitochondria injury induced by cortical spreading depression under hypoxic conditions

    Get PDF
    A rat cortical spreading depression (CSD) model was established to explore whether cerebral mitochondria injury was induced by CSD under both normoxic and hypoxic conditions and whether flunarizine had a protective effect on cerebral mitochondria. SD rats, which were divided into seven groups, received treatment as follows: no intervention (control Group I); 1 M NaCl injections (Group II); 1 M KCl injections (Group III); intraperitoneal flunarizine (3 mg/kg) 30 min before KCl injections (Group IV); 14% O2 inhalation before NaCl injections (Group V); 14% O2 inhalation followed by KCl injections (Group VI); 14% O2 inhalation and intraperitoneal flunarizine followed by KCl injections (Group VII). Following treatment, brains were removed for the analysis of mitochondria transmembrane potential (MMP) and oxidative respiratory function after recording the number, amplitude and duration of CSD. The duration of CSD was significantly longer in Group VI than that in Group III. The number and duration of CSD in Group VII was significantly lower than that in Group VI. MMP in Group VI was significantly lower than that in Group III, and MMP in Group VII was significantly higher than that in Group VI. State 4 respiration in Group VI was significantly higher than that in Group III, and state 3 respiration in Group VII was significantly higher than that in Group VI. Respiration control of rate in Group VII was also significantly higher than that in Group VI. Thus, we concluded that aggravated cerebral mitochondria injury might be attributed to CSD under hypoxic conditions. Flunarizine can alleviate such cerebral mitochondria injury under both normoxic and hypoxic conditions

    Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island

    Get PDF
    Background: Toxigenic Corynebacterium ulcerans can cause a diphtheria-like illness in humans and have been found in domestic animals, which were suspected to serve as reservoirs for a zoonotic transmission. Additionally, toxigenic C. ulcerans were reported to take over the leading role in causing diphtheria in the last years in many industrialized countries. Methods: To gain deeper insights into the tox gene locus and to understand the transmission pathway in detail, we analyzed nine isolates derived from human patients and their domestic animals applying next generation sequencing and comparative genomics. Results: We provide molecular evidence for zoonotic transmission of C. ulcerans in four cases and demonstrate the superior resolution of next generation sequencing compared to multi-locus sequence typing for epidemiologic research. Additionally, we provide evidence that the virulence of C. ulcerans can change rapidly by acquisition of novel virulence genes. This mechanism is exemplified by an isolate which acquired a prophage not present in the corresponding isolate from the domestic animal. This prophage contains a putative novel virulence factor, which shares high identity with the RhuM virulence factor from Salmonella enterica but which is unknown in Corynebacteria so far. Furthermore, we identified a putative pathogenicity island for C. ulcerans bearing a diphtheria toxin gene. Conclusion: The novel putative diphtheria toxin pathogenicity island could provide a new and alternative pathway for Corynebacteria to acquire a functional diphtheria toxin-encoding gene by horizontal gene transfer, distinct from the previously well characterized phage infection model. The novel transmission pathway might explain the unexpectedly high number of toxigenic C. ulcerans

    Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as Hypertension Susceptibility Genes in Han Chinese with a Genome-Wide Gene-Based Association Study

    Get PDF
    Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations

    Turicella otitidis and Corynebacterium auris: 20 years on

    No full text
    Turicella otitidis and Corynebacterium auris, described as new species 20 years ago, have been isolated mainly from the external ear canal and middle ear fluid. While their taxonomic position has been clearly established, their diagnosis in the routine laboratory is difficult. The question of their pathogenic potential in otitis is still open but might be elucidated better if corynebacteria are speciated more often
    corecore