44 research outputs found

    Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology

    Get PDF
    This work was funded through grants from the British Heart Foundation (BHF, SP/07/007/23671, RG/13/5/30112) and the National Institute for Health Research University College London Hospitals Biomedical Research Centre; The Zebrafish Model Organism Database: National Human Genome Research Institute (NHGRI, HG002659, HG004838, HG004834); The Rat Genome Database: National Heart, Lung, and Blood Institute on behalf of the NIH (HL64541); The Mouse Genome Database: NGHRI (HG003300); FlyBase: UK Medical Research Council (G1000968); and Gene Ontology Consortium: NIH NHGRI (U41 HG002273) to Drs Blake, Cherry, Lewis, Sternberg, and Thomas. Professor Riley received BHF personal chair award (CH/11/1/28798). Professors Lambiase and Tinker received support from BHF and UK Medical Research Council. Professor Tinker received National Institute for Health Research Biomedical Research Centre at Barts and BHF grant (RG/15/15/31742). Dr Roncaglia received EMBL-EBI Core funds

    Diacylglycerol oil for the metabolic syndrome

    Get PDF
    Excess adiposity has been shown to play a crucial role in the development of the metabolic syndrome. The elevated fasting and postprandial triglyceride-rich lipoprotein levels is the central lipid abnormality observed in the metabolic syndrome. Recent studies have indicated that diacylglycerol (DAG) is effective for fasting and postprandial hyperlipidemia and preventing excess adiposity by increasing postprandial energy expenditure. We will here discuss the mechanisms of DAG-mediated improvements in hyperlipidemia and in postprandial energy expenditure, and effects of DAG oil on lipid/glucose metabolism and on body fat. Further, the therapeutic application of DAG for the metabolic syndrome will be considered

    Knowing how things might have been

    Get PDF
    I know that I could have been where you are right now and that you could have been where I am right now, but that neither of us could have been turnips or natural numbers. This knowledge of metaphysical modality stands in need of explanation. I will offer an account based on our knowledge of the natures, or essences, of things. I will argue that essences need not be viewed as metaphysically bizarre entities; that we can conceptualise and refer to essences; and that we can gain knowledge of them. We can know about which properties are, and which properties are not, essential to a given entity. This knowledge of essence offers a route to knowledge of the ways those entities must be or could be

    Improving interpretation of cardiac phenotypes and enhancing discovery with expanded knowledge in the gene ontology

    No full text
    Background A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. Methods and Results In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. Conclusions We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects.</p

    Use of drones for research and conservation of birds of prey

    No full text
    In the last two decades, unmanned aircraft systems (UASs) have experienced an exponential development. Originally conceived for military use, technological advances and a dramatic reduction of prices are leading to widespread use of UASs in environmental disciplines including remote sensing, ecology, wildlife management or environmental monitoring (Chabot and Bird 2015; Linchant et al. 2015; Christie et al. 2016).Fil: Canal Piña, David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Negro Balmaseda, Juan José. Consejo Superior de Investigaciones Científicas; Españ
    corecore