1,754 research outputs found

    StemMapper: a curated gene expression database for stem cell lineage analysis.

    Get PDF
    Transcriptomic data have become a fundamental resource for stem cell (SC) biologists as well as for a wider research audience studying SC-related processes such as aging, embryonic development and prevalent diseases including cancer, diabetes and neurodegenerative diseases. Access and analysis of the growing amount of freely available transcriptomics datasets for SCs, however, are not trivial tasks. Here, we present StemMapper, a manually curated gene expression database and comprehensive resource for SC research, built on integrated data for different lineages of human and mouse SCs. It is based on careful selection, standardized processing and stringent quality control of relevant transcriptomics datasets to minimize artefacts, and includes currently over 960 transcriptomes covering a broad range of SC types. Each of the integrated datasets was individually inspected and manually curated. StemMapper's user-friendly interface enables fast querying, comparison, and interactive visualization of quality-controlled SC gene expression data in a comprehensive manner. A proof-of-principle analysis discovering novel putative astrocyte/neural SC lineage markers exemplifies the utility of the integrated data resource. We believe that StemMapper can open the way for new insights and advances in SC research by greatly simplifying the access and analysis of SC transcriptomic data. StemMapper is freely accessible at http://stemmapper.sysbiolab.eu

    Lutzomyia adiketis sp. n. (Diptera: Phlebotomidae), a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amber fossils can be used to trace the history of disease-vector associations because microorganisms are preserved "in situ" inside the alimentary tract and body cavity of blood-sucking insects.</p> <p>Results</p> <p><it>Lutzomyia adiketis </it>sp. n. (Phlebotomidae: Diptera) is described from Dominican amber as a vector of <it>Paleoleishmania neotropicum </it>sp. n. (Kinetoplastida: Trypanosomatidae). The fossil sand fly differs from all previously described extinct and extant members of the genus by the following combination of characters: Sc forked with the branches meeting the costa and radius veins; wing L/W value of 4.1; a δ value of 18; a ratio β/α value of 0.86, and the shape and size of the spatulate rods on the ninth sternite. The trypanosomatid is characterized by the structure of its promastigotes, amastigotes and paramastigotes and its transmission by an extinct species of sand fly.</p> <p>Conclusion</p> <p>Morphological characters show that the fossil sand fly is a new extinct species and that it is host to a digenetic species of trypanosomatid. This study provides the first fossil evidence that Neotropical sand flies were vectors of trypanosomatids in the mid-Tertiary (20–30 mya).</p

    National Assessment of Human Health Effects of Climate Change in Portugal: Approach and Key Findings

    Get PDF
    In this study we investigated the potential impact of climate change in Portugal on heat-related mortality, air pollution–related health effects, and selected vectorborne diseases. The assessment used climate scenarios from two regional climate models for a range of future time periods. The annual heat-related death rates in Lisbon may increase from between 5.4 and 6 per 100,000 in 1980–1998 to between 8.5 and 12.1 by the 2020s and to a maximum of 29.5 by the 2050s, if no adaptations occur. The projected warmer and more variable weather may result in better dispersion of nitrogen dioxide levels in winter, whereas the higher temperatures may reduce air quality during the warmer months by increasing tropospheric ozone levels. We estimated the future risk of zoonoses using ecologic scenarios to describe future changes in vectors and parasites. Malaria and schistosomiasis, which are currently not endemic in Portugal, are more sensitive to the introduction of infected vectors than to temperature changes. Higher temperatures may increase the transmission risk of zoonoses that are currently endemic to Portugal, such as leishmaniasis, Lyme disease, and Mediterranean spotted fever
    corecore